15 research outputs found

    Statistical Properties of Nonlinear Shell Models of Turbulence from Linear Advection Models: Rigorous Results

    Full text link
    In a recent paper it was proposed that for some nonlinear shell models of turbulence one can construct a linear advection model for an auxiliary field such that the scaling exponents of all the structure functions of the linear and nonlinear fields coincide. The argument depended on an assumption of continuity of the solutions as a function of a parameter. The aim of this paper is to provide a rigorous proof for the validity of the assumption. In addition we clarify here when the swap of a nonlinear model by a linear one will not work.Comment: 7 pages, 4 figures, submitted to Nonlinearit

    Analytic Study of Shell Models of Turbulence

    Full text link
    In this paper we study analytically the viscous `sabra' shell model of energy turbulent cascade. We prove the global regularity of solutions and show that the shell model has finitely many asymptotic degrees of freedom, specifically: a finite dimensional global attractor and globally invariant inertial manifolds. Moreover, we establish the existence of exponentially decaying energy dissipation range for the sufficiently smooth forcing

    A Note on the Regularity of Inviscid Shell Model of Turbulence

    Get PDF
    In this paper we continue the analytical study of the sabra shell model of energy turbulent cascade initiated in \cite{CLT05}. We prove the global existence of weak solutions of the inviscid sabra shell model, and show that these solutions are unique for some short interval of time. In addition, we prove that the solutions conserve the energy, provided that the components of the solution satisfy unCkn1/3(nlog(n+1))1|{u_n}| \le C k_n^{-1/3} (\sqrt{n} \log(n+1))^{-1}, for some positive absolute constant CC, which is the analogue of the Onsager's conjecture for the Euler's equations. Moreover, we give a Beal-Kato-Majda type criterion for the blow-up of solutions of the inviscid sabra shell model and show the global regularity of the solutions in the ``two-dimensional'' parameters regime

    Sharp Lower Bounds for the Dimension of the Global Attractor of the Sabra Shell Model of Turbulence

    Get PDF
    In this work we derive a lower bounds for the Hausdorff and fractal dimensions of the global attractor of the Sabra shell model of turbulence in different regimes of parameters. We show that for a particular choice of the forcing and for sufficiently small viscosity term ν\nu, the Sabra shell model has a global attractor of large Hausdorff and fractal dimensions proportional to logλν1\log_\lambda \nu^{-1} for all values of the governing parameter ϵ\epsilon, except for ϵ=1\epsilon=1. The obtained lower bounds are sharp, matching the upper bounds for the dimension of the global attractor obtained in our previous work. Moreover, we show different scenarios of the transition to chaos for different parameters regime and for specific forcing. In the ``three-dimensional'' regime of parameters this scenario changes when the parameter ϵ\epsilon becomes sufficiently close to 0 or to 1. We also show that in the ``two-dimensional'' regime of parameters for a certain non-zero forcing term the long-time dynamics of the model becomes trivial for any value of the viscosity

    Quasi-Continuous MIMO Sliding-Mode Control

    No full text
    corecore