4,607 research outputs found
Traffic Network Optimum Principle - Minimum Probability of Congestion Occurrence
We introduce an optimum principle for a vehicular traffic network with road
bottlenecks. This network breakdown minimization (BM) principle states that the
network optimum is reached, when link flow rates are assigned in the network in
such a way that the probability for spontaneous occurrence of traffic breakdown
at one of the network bottlenecks during a given observation time reaches the
minimum possible value. Based on numerical simulations with a stochastic
three-phase traffic flow model, we show that in comparison to the well-known
Wardrop's principles the application of the BM principle permits considerably
greater network inflow rates at which no traffic breakdown occurs and,
therefore, free flow remains in the whole network.Comment: 22 pages, 6 figure
Galactic Extinction from Colors and Counts of Field Galaxies in WFPC2 Frames: An Application to GRB 970228
We develop the ``simulated extinction method'' to measure average foreground
Galactic extinction from field galaxy number-counts and colors. The method
comprises simulating extinction in suitable reference fields by changing the
isophotal detection limit. This procedure takes into account selection effects,
in particular, the change in isophotal detection limit (and hence in isophotal
magnitude completeness limit) with extinction, and the galaxy color--magnitude
relation.
We present a first application of the method to the HST WFPC2 images of the
gamma-ray burster GRB 970228. Four different WFPC2 high-latitude fields,
including the HDF, are used as reference to measure the average extinction
towards the GRB in the F606W passband. From the counts, we derive an average
extinction of A_V = 0.5 mag, but the dispersion of 0.4 mag between the
estimates from the different reference fields is significantly larger than can
be accounted by Poisson plus clustering uncertainties. Although the counts
differ, the average colors of the field galaxies agree well. The extinction
implied by the average color difference between the GRB field and the reference
galaxies is A_V = 0.6 mag, with a dispersion in the estimated extinction from
the four reference fields of only 0.1 mag. All our estimates are in good
agreement with the value of 0.81\pm0.27 mag obtained by Burstein & Heiles, and
with the extinction of 0.78\pm0.12 measured by Schlegel et al. from maps of
dust IR emission. However, the discrepancy between the widely varying counts
and the very stable colors in these high-latitude fields is worth
investigating.Comment: 14 pages, 2 figures; submitted to the Astrophysical Journa
Duality symmetry, strong coupling expansion and universal critical amplitudes in two-dimensional \Phi^{4} field models
We show that the exact beta-function \beta(g) in the continuous 2D g\Phi^{4}
model possesses the Kramers-Wannier duality symmetry. The duality symmetry
transformation \tilde{g}=d(g) such that \beta(d(g))=d'(g)\beta(g) is
constructed and the approximate values of g^{*} computed from the duality
equation d(g^{*})=g^{*} are shown to agree with the available numerical
results. The calculation of the beta-function \beta(g) for the 2D scalar
g\Phi^{4} field theory based on the strong coupling expansion is developed and
the expansion of \beta(g) in powers of g^{-1} is obtained up to order g^{-8}.
The numerical values calculated for the renormalized coupling constant
g_{+}^{*} are in reasonable good agreement with the best modern estimates
recently obtained from the high-temperature series expansion and with those
known from the perturbative four-loop renormalization-group calculations. The
application of Cardy's theorem for calculating the renormalized isothermal
coupling constant g_{c} of the 2D Ising model and the related universal
critical amplitudes is also discussed.Comment: 16 pages, REVTeX, to be published in J.Phys.A:Math.Ge
Lattice Relaxation and Charge-Transfer Optical Transitions Due to Self-Trapped Holes in Non-Stoichiometric LaMnO Crystal
We use the Mott-Littleton approach to evaluate polarisation energies in
LaMnO lattice associated with holes localized on both Mn cation and
O anion. The full (electronic and ionic) lattice relaxation energy for a
hole localized at the O-site is estimated as 2.4 eV which is appreciably
greater than that of 0.8 eV for a hole localized at the Mn-site, indicating on
the strong electron-phonon interaction in the former case. Using a Born-Haber
cycle we examine thermal and optical energies of the hole formation associated
with electron ionization from Mn, O and La ions in
LaMnO lattice. For these calculations we derive a phenomenological value
for the second electron affinity of oxygen in LaMnO lattice by matching the
optical energies of La and O hole formation with maxima of binding
energies in the experimental photoemission spectra. The calculated thermal
energies predict that the electronic hole is marginally more stable in the
Mn state in LaMnO host lattice, but the energy of a hole in the
O state is only higher by a small amount, 0.75 eV, rather suggesting that
both possibilities should be treated seriously. We examine the energies of a
number of fundamental optical transitions, as well as those involving
self-trapped holes of Mn and O in LaMnO lattice. The reasonable
agreement with experiment of our predicted energies, linewidths and oscillator
strengths leads us to plausible assignments of the optical bands observed. We
deduce that the optical band near 5 eV is associated with O(2p) - Mn(3d)
transition of charge-transfer character, whereas the band near 2.3 eV is rather
associated with the presence of Mn and/or O self-trapped holes in
non-stoichiometric LaMnO compound.Comment: 18 pages, 6 figures, it was presented partially at SCES-2001
conference in Ann Arbor, Michiga
FUSE and HST/STIS far-ultraviolet observations of AM Herculis in an extended low state
We have obtained FUSE and HST/STIS time-resolved spectroscopy of the polar AM
Herculis during a deep low state. The spectra are entirely dominated by the
emission of the white dwarf. Both the far-ultraviolet (FUV) flux as well as the
spectral shape vary substantially over the orbital period, with maximum flux
occurring at the same phase as during the high state. The variations are due to
the presence of a hot spot on the white dwarf, which we model quantitatively.
The white dwarf parameters can be determined from a spectral fit to the faint
phase data, when the hot spot is self-eclipsed. Adopting the distance of
79+8-6pc determined by Thorstensen, we find an effective temperature of
19800+-700K and a mass of Mwd=0.78+0.12-0.17Msun. The hot spot has a lower
temperature than during the high state, ~34000-40000K, but covers a similar
area, ~10% of the white dwarf surface. Low state FUSE and STIS spectra taken
during four different epochs in 2002/3 show no variation of the FUV flux level
or spectral shape, implying that the white dwarf temperature and the hot spot
temperature, size, and location do not depend on the amount of time the system
has spent in the low state. Possible explanations are ongoing accretion at a
low level, or deep heating, both alternatives have some weaknesses that we
discuss. No photospheric metal absorption lines are detected in the FUSE and
STIS spectra, suggesting that the average metal abundances in the white dwarf
atmosphere are lower than 1e-3 times their solar values.Comment: ApJ in press, 12 pages, 11 figure
Dynamic Jahn-Teller Effect and Colossal Magnetoresistance in
A model for which incorporates the physics of dynamic
Jahn-Teller and double-exchange effects is presented and solved via a dynamical
mean field approximation. In an intermediate coupling regime the interplay of
these two effects is found to reproduce the behavior of the resistivity and
magnetic transition temperature observed in .Comment: 11 pages. Latex. Minor revisions, including improvement of discussion
of state with frozen-in lattice distortion. Figures (available from
[email protected]) unchange
Bremsstrahlung of a Quark Propagating through a Nucleus
The density of gluons produced in the central rapidity region of a heavy ion
collision is poorly known. We investigate the influence of the effects of
quantum coherence on the transverse momentum distribution of photons and gluons
radiated by a quark propagating through nuclear matter. We describe the case
that the radiation time substantially exceeds the nuclear radius (the relevant
case for RHIC and LHC energies), which is different from what is known as
Landau-Pomeranchuk-Migdal effect corresponding to an infinite medium. We find
suppression of the radiation spectrum at small transverse photon/gluon momentum
k_T, but enhancement for k_T>1GeV. Any nuclear effects vanish for k_T > 10GeV.
Our results allow also to calculate the k_T dependent nuclear effects in prompt
photon, light and heavy (Drell-Yan) dilepton and hadron production.Comment: Appendix A is extended compared to the version to be published in
Phys.Rev.
Solar abundances of rock-forming elements, extreme oxygen and hydrogen in a young polluted white dwarf
The Teff = 20 800 K white dwarf WD 1536+520 is shown to have broadly solar abundances of the major rock-forming elements O, Mg, Al, Si, Ca, and Fe, together with a strong relative depletion in the volatile elements C and S. In addition to the highest metal abundances observed to date, including log (O/He) = −3.4, the helium-dominated atmosphere has an exceptional hydrogen abundance at log (H/He) = −1.7. Within the uncertainties, the metal-to-metal ratios are consistent with the accretion of an H2O-rich and rocky parent body, an interpretation supported by the anomalously high trace hydrogen. The mixed atmosphere yields unusually short diffusion time-scales for a helium atmosphere white dwarf, of no more than a few hundred years, and equivalent to those in a much cooler, hydrogen-rich star. The overall heavy element abundances of the disrupted parent body deviate modestly from a bulk Earth pattern, and suggest the deposition of some core-like material. The total inferred accretion rate is 4.2 × 109 g s−1, and at least four times higher than for any white dwarf with a comparable diffusion time-scale. Notably, when accretion is exhausted in this system, both metals and hydrogen will become undetectable within roughly 300 Myr, thus supporting a scenario where the trace hydrogen is related to the ongoing accretion of planetary debris
On the Fermi Liquid to Polaron Crossover I: General Results
We use analytic techniques and the dynamical mean field method to study the
crossover from fermi liquid to polaron behavior in models of electrons
interacting with dispersionless classical phonons.Comment: 42 pages, 13 figure
- …