2 research outputs found

    Naturally Bicarbonated Water Supplementation Does Not Improve Anaerobic Cycling Performance or Blood Gas Parameters in Active Men and Women

    Get PDF
    The completion of high-intensity exercise results in robust perturbations to physiologic homeostasis, challenging the body’s natural buffering systems to mitigate the accumulation of metabolic by-products. Supplementation with bicarbonate has previously been used to offset metabolic acidosis, leading to improvements in anaerobic exercise performance. Purpose: The purpose of this study was to investigate the presence of ergogenic properties in naturally occurring low-dose bicarbonated water and their effects on anaerobic cycling performance and blood gas kinetics in recreationally active men and women. Methods: Thirty-nine healthy, recreationally active men and women (28.1 ± 8.0 years, 169.8 ± 11.7 cm, 68.9 ± 10.8 kg, 20.1 ± 7.9% fat, V˙ role= presentation style= box-sizing: border-box; max-height: none; display: inline; line-height: normal; font-size: 13.2px; overflow-wrap: normal; text-wrap: nowrap; float: none; direction: ltr; max-width: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; color: rgb(34, 34, 34); font-family: Arial, Arial, Helvetica, sans-serif; position: relative; \u3eV˙V˙O2peak: 42.8 ± 7.6 mL/kg/min) completed two separate testing sessions consisting of 15 cycling sprints (10 s sprint, 20 s active rest) against 7.5% of their body mass. Using a randomized, double-blind, placebo-controlled, parallel group study design, study participants consumed a 10 mL/kg dose of either spring water (SW) or bicarbonated mineral water (BMW) (delivering ~3 g/day of bicarbonate) for 7 days. Venous blood was collected before, immediately after, and 5 and 10 min after the sprint protocol and was analyzed for lactate and a series of blood gas components. After the completion of 15 cycling sprints, averages of peak and mean power for bouts 1–5, 6–10, and 11–15, along with total work for the entire cycling protocol, were calculated. All performance and blood gas parameters were analyzed using a mixed-factorial ANOVA. Results: pH was found to be significantly higher in the BMW group immediately after (7.17 ± 0.09 vs. 7.20 ± 0.11; p = 0.05) and 10 min post exercise (7.21 ± 0.11 vs. 7.24 ± 0.09; p = 0.04). A similar pattern of change was observed 5 min post exercise wherein pH levels in the SW group were lower than those observed in the BMW group; however, this difference did not achieve statistical significance (p = 0.09). A statistical trend (p = 0.06) was observed wherein lactate in the BMW group tended to be lower than in the SW group 5 min post exercise. No significant main effect for time (p \u3e 0.05) or group × time interactions (p \u3e 0.05) for the total work, average values of peak power, or average values of mean power were observed, indicating performance was unchanged. Conclusion: One week of consuming water with increased bicarbonate (10 mL/kg; ~3 g/day bicarbonate) showed no effect on anaerobic cycling performance. BMW decreased blood lactate concentrations 5 min after exercise and increased blood pH immediately and 10 min after exercise

    Metabolic impact of feeding prior to a 60-min bout of moderate-intensity exercise in females in a fasted state

    Get PDF
    BackgroundThe metabolic impact of pre-exercise feeding of protein or carbohydrate on fat oxidation and energy expenditure rates, especially, in females, is poorly understood.MethodsRecreationally active females (n = 15, 32 ± 10 years, 164.8 ± 5.6 cm, 63.5 ± 9.3 kg, 23.4 ± 3.2 kg/m2) completed four testing sessions in a randomized, double-blind, crossover fashion after fasting overnight. Participants ingested isovolumetric and isoenergetic solutions containing either 25 g of whey protein, casein protein, carbohydrate (CHO), or a non-caloric placebo (PLA). Participants then completed 60 min of treadmill exercise at 15% below ventilatory threshold 30 min after ingestion. Respiratory exchange ratio (RER) was evaluated throughout exercise and resting energy expenditure (REE) was assessed pre-exercise, and 0-, 60-, and 120-min post-exercise.ResultsA significant condition x time interaction was observed for RER (p = 0.008) during exercise, with CHO exhibiting higher RER values (vs. PLA) at four time points. A significant main effect for condition was observed for carbohydrate (p = 0.001) and fat (p = 0.02) oxidation rates during exercise, with fat oxidation rates being higher in PLA vs. CHO (p = 0.01). When total fat oxidized was calculated across the entire exercise bout, a significant main effect for condition was observed (p = 0.01), with PLA being greater than CHO (p = 0.04). A significant condition x time interaction (p = 0.02) was found for both absolute and normalized REE, with casein and whey protein having significantly higher values than CHO (p < 0.05) immediately post-exercise.ConclusionWhen compared to a fasted control (PLA), consuming CHO, but not protein, decreased total fat oxidation prior to a 60-min bout of moderate-intensity exercise in females
    corecore