2 research outputs found
321 Tb/s E/S/C/L-band Transmission with E-band Bismuth-Doped Fiber Amplifier and Optical Processor
Using a newly developed bismuth doped fiber amplifier operating across the E-band and a multi-port optical processor, we investigate wideband E/S/C/L-band transmission with signal bandwidths up to 27.8 THz and distances up to 200 km. Dense wavelength-division multiplexed (D-WDM) transmission is enabled by using a combination of thulium, erbium and bismuth doped-fiber amplifiers in combination with distributed Raman amplification. For 50 km transmission, we transmit a wideband DWDM signal comprising 1097 channels covering 212.3 nm (27.8 THz) from 1410.8 nm to 1623.1 nm for a record single-mode fiber (SMF) data-rate of 321 Tb/s (301 Tb/s after decoding), an increase of 25% on the previous record data-rate. We further show single span transmission at 100 km and 150 km before recording 270.9 Tb/s (258.1 Tb/s after decoding) for 200 km transmission over 2 amplified spans. These results show the potential of E-band transmission, to increase the information carrying capability of optical fibers and open the door to multi-band fiber networks built on already deployed fibers