34 research outputs found

    Quadratic diameter bounds for dual network flow polyhedra

    Full text link
    Both the combinatorial and the circuit diameters of polyhedra are of interest to the theory of linear programming for their intimate connection to a best-case performance of linear programming algorithms. We study the diameters of dual network flow polyhedra associated to bb-flows on directed graphs G=(V,E)G=(V,E) and prove quadratic upper bounds for both of them: the minimum of (∣V∣−1)⋅∣E∣(|V|-1)\cdot |E| and 16∣V∣3\frac{1}{6}|V|^3 for the combinatorial diameter, and ∣V∣⋅(∣V∣−1)2\frac{|V|\cdot (|V|-1)}{2} for the circuit diameter. The latter strengthens the cubic bound implied by a result in [De Loera, Hemmecke, Lee; 2014]. Previously, bounds on these diameters have only been known for bipartite graphs. The situation is much more involved for general graphs. In particular, we construct a family of dual network flow polyhedra with members that violate the circuit diameter bound for bipartite graphs by an arbitrary additive constant. Further, it provides examples of circuit diameter 43∣V∣−4\frac{4}{3}|V| - 4

    Edges vs Circuits: a Hierarchy of Diameters in Polyhedra

    Full text link
    The study of the graph diameter of polytopes is a classical open problem in polyhedral geometry and the theory of linear optimization. In this paper we continue the investigation initiated in [4] by introducing a vast hierarchy of generalizations to the notion of graph diameter. This hierarchy provides some interesting lower bounds for the usual graph diameter. After explaining the structure of the hierarchy and discussing these bounds, we focus on clearly explaining the differences and similarities among the many diameter notions of our hierarchy. Finally, we fully characterize the hierarchy in dimension two. It collapses into fewer categories, for which we exhibit the ranges of values that can be realized as diameters
    corecore