301 research outputs found

    Rupture process of the recent large Sumatra earthquakes: 26/12/2004 (Mw=9.3) and 28/03/2005 (Mw=8.6)

    Get PDF
    The Sumatra mega-earthquake with magnitude 9.3 of 26 December 2004 was the strongest earthquake in the world since the 1964 Alaska earthquake and the fourth since 1900. The earthquake occurred on the interface of the India and Burma plates and triggered a massive tsunami that affected several countries throughout South and Southeast Asia. The rupture, estimated by the aftershock distribution, start from central Sumatra northward for about 1200 kilometres (Borges et al., 2004). Three months latter in 28 March 2005, about 200 km south of this event, but at a greater depth (28 km) occurred a magnitude 8.6 earthquake. This event was probably triggered by stress variations caused by the December Sumatra mega-earthquake (McCloskey et al., 2005). In this work we describe the rupture process of the both earthquakes estimated from teleseismic broad-band waveform data

    Seismicity and Ground Motion Simulations of the SW Iberia Margin

    Get PDF
    In this study, we focus on the region between Gorringe Bank and the Horseshoe Fault located in the SW Iberia margin, which is believed to be the site of the great 1755 earthquake. We model ground motions using an extended source located near the Horseshoe scarp to generate synthetic waveforms using a wave propagation code, based on the finite-difference method. We compare the simulated waveforms using a 3-D velocity model down to the Moho discontinuity with a simple 1-D layered mod- el. The radiated wave field is very sensitive to the velocity model and a small number of source parameters; in particular, the rupture directivity. The rupture directivity (controlled by the rupture initiation location), the strike direction and the fault di- mensions are critical to the azimuthal distribution of the maximum amplitude oscilla- tions. We show that the use of a stratified 1-D model is inappropriate in SW Iberia, where sources are located in the oceanic domain and receivers in the continental do- main. The crustal structure varies dramatically along the ray paths, with large-scale heterogeneities of low or high velocities. Moreover, combined with the geometric li- mitations inherent to the region, a strong trade-off between several parameters is of- ten observed; this is particularly critical when studying moderate magnitude earth- quakes (M< 6), which constitute the bulk of the seismic catalogue in SW Iberia

    The 2004 and 2005 Sumatra Earthquakes: Implications for the Lisbon earthquake

    Get PDF
    The Sumatra mega-earthquake of 26 December 2004 (Mw=9.3) was the strongest earthquake in the world since the 1964 Alaska earthquake and the fifth strongest since 1900. The earthquake occurred at the interface of the India and Burma plates and triggered a massive tsunami that affected several countries throughout South and Southeast Asia. Three months later, on 28 March 2005, about 200 km south of this event but at a greater depth (28 km), occurred a magnitude 8.7 earthquake. This event was probably triggered by stress variations caused by the December mega-earthquake. In this work we describe the rupture process of both earthquakes, estimated from teleseismic broad-band waveform data provided by IRIS-DMC stations. The rupture direction and velocity were determined from common pulse durations observed in P waveforms using DIRDOP computational code (DIRectivity DOPpler effect). The modified Kikuchi and Kanamori method has been used to determine the slip distribution. For the mega- earthquake two segments of 150 km width (along dip) and 990 km total length with different azimuth were estimated, based on the subduction geometry, aftershock distribution and CMT. Results show that the rupture spread mainly to the North with an average velocity of 2.7 km/s. The focal mechanism shows thrust motion on a plane oriented in a NNW-SSE direction and a horizontal pressure axis in the NNE-SSW direction. The fault slip distribution shows the following pattern: 1) the rupture nucleated at the hypocenter as a circular crack breaking a shallow asperity of about 60 km radius during the first 60 sec; 2) after the initial break to the NNW, the rupture propagated during ~180 s and broke a middle large asperity centred at about 360 km from the epicentre; 3) finally, the rupture propagated further to the north and broke a third asperity centred at ~840 km from the epicentre during at least 110 sec. The maximum slip reaches 14 m in the central asperity and the total seismic moment is Mo=3.0x1022 Nm (Mw=8.9), which is less than the value given by the ESMC and USGS (the loss of seismic scalar moment was released in a third segment located to the north). The total source duration and rupture length are estimated to be above 350 sec and 990 km, respectively. For the earthquake of 28 March 2005, a rectangular rupture plane with 400 km length (along the strike direction) and 125 km width (along the dip direction) was obtained from the subduction geometry, aftershock distribution and CMT. Results show that the rupture spread during about 110s in the southwest direction with an average velocity of ~3.3 km/s. Most of the seismic moment was released at the break of two asperities: the largest one located at about 90km from the hypocenter, and the other one at 175 km from the hypocenter. These two asperities correspond on the surface to the areas most affected by the event (Nias Island). The maximum slip reaches 11.5 m in the largest asperity and the total seismic moment is Mo=0.82x1022 Nm (Mw=8.6). The focal mechanism shows thrust motion similar to this shown by the mega-earthquake. Probably, the 1755 Lisbon earthquake (Mw∼9.0) released as much or more energy as any seismic event of recorded history prior to 2004 December. Nevertheless, the location of the source, responsible for the Lisbon tsunami, is not well known; the epicentres suggested by various authors are separated by some hundreds of km. We compare the similarities and differences of these two mega- earthquakes (Sumatra and Lisbon) with the purpose of reducing the uncertainties relative to the location of the seismogenic zone responsible for the 1755 Lisbon earthquake. Lessons learned from the Sumatra earthquake, through scientific studies, should help to reduce the number of victims and damage during future earthquakes in Portugal

    The recent 2007 Portugal earthquake (Mw=6.1) in the seismotectonic context of the SW Atlantic area

    Get PDF
    An event of magnitude Mw 6.1(EMSC) occurred on 12/02/2007 at 10:35 UTC off coast of South-Western Portugal. The earthquake had its epicentre in the eastern Horseshoe Abyssal Plain, at 175 km South-West of San Vicente Cape (Figure 1). This earthquake is the largest earthquake since the great instrumental earthquake, Ms=8.0 (USGS), occurred on February 28th, 1969 in the same epicentral area. This earthquake was followed by four small aftershocks with magnitude less or equal to 3.5. There has been no reported damage associated to the event since habitated regions are too far away from the epicentre. This event has been widely felt in Portugal, particularly in the Algarve Region (I=IV – IM information), Southern Spain and Western Morocco and up to 700 km away of the epicentre (Salamanca, Madrid) (EMSC report in http://www.emsc-csem.org)

    Recent Seismic Activity in the Azores Region

    Get PDF
    This seismic activity in the Azores Region is characterized by sequences of low-magnitude events, usually with epicenter off-shore. These seismic sequences are sometimes triggered by larger events, felt by the population, that could produce significant material and human losses. This characteristic is confirmed by the historical and instrumental seismicity, in particular by the recent earthquakes occurred on 1980 (Mw=6.8), 1997 (Mw=6.2), 1998 (Mw=6.2) and 2007 (Mw=6.3, Mw=6.1). The mechanism responsible for this spatial and temporal seismic pattern still yet not very well known. In this work we discuss the recent (2007) seismic activity of the Azores region by analyzing the spatial and temporal distribution of seismic events associated with two sequences with different characteristics. The fisrt one is a seismic swarm started on April 21st 2007, centered at about 40 kilometers west of the Faial Island (maximum magnitude mb=4.0). The second one corresponds to an aftershock sequence associated to the events of 2007/04/05 (Mw=6.3) and 2007/04/07 (Mw=6.1), both with epicenter in the Formigas Islets and felt (I=V/VI in Mercali scale) in S. Miguel. We calculate the static Coulomb stress change for both events using focal mechanisms derived from the inversion of body waves. We find that the static stress change caused by the April 5 event is higher, about 2 bar at the location of the second event (April 7), triggering the second rupture. Locations of aftershocks do not agree well with areas of increased Coulomb failure stress

    The 1980, 1997 and 1998 Azores earthquakes and its seismotectonic implications

    Get PDF
    We have studied the focal mechanisms of the 1980, 1997 and 1998 earthquakes in the Azores region from body-wave inversion of digital GDSN (Global Digital Seismograph Network) and broadband data. For the 1980 and 1998 shocks, we have obtained strike– slip faulting, with the rupture process made up of two sub-events in both shocks, with total scalar seismic moments of 1.9 × 1019 Nm (Mw = 6.8) and 1.4 × 1018 Nm (Mw = 6.0), respectively. For the 1997 shock, we have obtained a normal faulting mechanism, with the rupture process made up of three sub-events, with a total scalar seismic moment of 7.7 × 1017 Nm (Mw = 5.9). A common characteristic of these three earthquakes was the shallow focal depth, less than 10 km, in agreement with the oceanic-type crust. From the directivity function of Rayleigh (LR) waves, we have identified the NW–SE plane as the rupture plane for the 1980 and 1998 earthquakes with the rupture propagating to the SE. Slow rupture velocity, about of 1.5 km/s, has been estimated from directivity function for the 1980 and 1998 earthquakes. From spectral analysis and body-wave inversion, fault dimensions, stress drop and average slip have been estimated. Focal mechanisms of the three earthquakes we have studied, together with focal mechanisms obtained by other authors, have been used in order to obtain a seismotectonic model for the Azores region. We have found different types of behaviour present along the region. It can be divided into two zones: Zone I, from 30°W to 27°W; Zone II, from 27°W to 23°W, with a change in the seismicity and stress direction from Zone I. In Zone I, the total seismic moment tensor obtained corresponded to left-lateral strike–slip faulting with horizontal pressure and tension axes in the E–W and N–S directions, respectively. In Zone II, the total seismic moment tensor corresponded to normal faulting, with a horizontal tension axis trending NE–SW, normal to the Terceira Ridge. The stress pattern for the whole region corresponds to horizontal extension with an average seismic slip rate of 4.4 mm/yr

    Seismicity along the western part of the Eurasia-Nubian plate boundary

    Get PDF
    The seismicity along the western part of the Eurasia-Nubian plate boundary is characterized by a very complex pattern. In average, the motion is transtensional in the Azores, dextral along the Gloria transform zone and convergent between the SW Portuguese Atlantic margin and the Ibero-Maghrebian zone. To constraint the factors controlling the seismicity, we provide a new seismotectonic synthesis using several significant seismic events. We show that the studied area can be divided into six different regions, each one characterized by a coherent seismicity pattern. The total seismic moment tensor and the average slip velocities are provided for each one of them. To understand the spatial distribution of the seismicity, we compute for each event from the focal mechanism the slip vector and compare it to the relative velocity between the Eurasia and Nubia plates, deduced from global kinematics models. Despite local departures in the Alboran Sea and in the proximity of the Mid Atlantic Ridge, we find a good correlation between these two independent vectors sets. Quantitatively, the slip velocities display a linear, non-affine correlation with the norms of the relative kinematics velocities. The norm of the slip velocities seems to also depend on the tectonic regime and on the morphology of the plates’ boundary

    Extended Seismic Source Characterisation using Linear Programming Inversion in a Dual Formulation

    Get PDF
    A linear programming (LP) inversion method in a dual formulation was applied to reconstruct the kinematics of finite seismic ruptures. In a general setting, this approach can yield results from several data sets: strong ground motion, teleseismic waveforms or/and geodesic data (static deformation). The dual formulation involves the transformation of a normal solution space into an equivalent but reduced space: the dual space. The practical result of this transformation is a simpler inversion problem that is therefore faster to resolve, more stable and more robust. The developed algorithm includes a forward problem that calculates Green’s functions using a finite differences method with a 3D structure model. To evaluate the performance of this algorithm, we applied it to the reconstitution of a realistic slip distribution model from a data set synthesised using this model, i.e., the solution of the forward problem. Several other standard inversion approaches were applied to the same synthetic data for comparison

    Tomography and geodynamics structure of the Ibero- Maghrebian region

    Get PDF
    The present study has two main goals: 1) use the most actual seismological data from recent earthquakes in the extended Alboran region to develop a geodynamic-structural model for the region through the application of seismic local tomography techniques; 2) modelling seismogenic sources using specific applications of analysis. The structural scheme detailed in depth will allows us to define possible structural blocks in region between north of Morocco and Alboran sea. Currently the GPS studies show local movements in northern morocco independently of the general movement of the African plate. The present tomographic study focuses on SW Ibero-Maghrebian region. The P and S arrival times at 52 stations located at north of Morocco (National Institute of Geophysics, CNRST, Rabat), south of Portugal (Instituto de Meteorologia, Lisbon) and Spain (Instituto Geografico National, Madrid) are used for the period between 12/1988 and 30/2008. We use a linearized inversion procedure to find a 3D velocity model for the studied region. The resolution tests indicate that the calculated images give near true structure for the Tanger peninsula, the Alhoceima region and southern Spain at 5km depth. At 15, 30, 45 km depth we observe a near true structure in northern Morocco, and southern Spain. At 60 and 100 km, the southern Spain and SW of Alboran Sea gives a near true structure. The resulting tomographic image shows that the total crustal thickness varies between 25 and 35 km and contains low-velocity anomalies. Is defined clearly a prominent negative P- wave velocity anomaly with a maximum decrease of approximately 6 per cent, at 15 km depth, in the northern Morocco. This low velocity demarcates a small bloc located between Iberia and African plate. This bloc is presented by a prominent high velocity anomaly that shows a maximum increase in P-wave velocity of approximately 6 per cent. The area with high velocity values could represent brittle and competent parts of the crust and lithosphere which sustain seismogenic stress where asperities along the faults could exist and probably more with the Iberia-Africa plate boundary. Strong ground motions from major earthquakes depend strongly upon the 3D seismic velocity structure of the crust. Moreover the 3D velocity model is crucial for a better comprehension of structures behavior and has important practical applications toward understanding earthquake hazard in the Ibero-Maghrebian region. In particular, we hope to contribute, with this model, for seismic risk mitigation in north of Morocco

    The Gulf of Cádiz: thrusting or strike-slip motion?

    Get PDF
    In the Gulf of Cádiz (SW Iberian Peninsula) the boundary between Eurasia and Nubia plates corresponds to a narrow band well defined by the seismicity, where large earthquakes (M>7.0) may be associated to N-S to NNW-SSE horizontal compression due to the convergence between the two plates. Most of these earthquakes are at shallow depth (less than 40 km), with some foci at intermediate-depth, showing E-W distribution and limited by a narrow band less than 20 km wide that broadens as we move to the Strait of Gibraltar. In this area the lithospheric material is relatively rigid and the stresses are released by larger earthquakes. General tectonic models proposed for the Azores-Tunisia plate boundary explain fairly well the nature of its seismicity and tectonic motions; however, details of some of its aspects are still poorly understood and controversial. Zittelini et al. (2009) has recently proposed for the Gulf of Cádiz, transcurrent-transpressional motion along a long strike slip fault based on multichannel seismic reflection surveys. However, this contradicts the compressional motion and reverse faulting of large 1755 Lisbon earthquake (~Mw9), which generate a large tsunami and the recent moderate (Mw>6.0) in 1964, 2007 and 2009 and large (Mw= 8.0) in 1969 earthquakes occurred in the region. These earthquakes show thrusting motion along E-W faults with the southern block going under, corresponding to horizontal NW-SE compression, and they can be related directly to the plate convergence between Nubia and Iberia. References Zitellini et al., 2009. The quest for the Africa–Eurasia plate boundary west of the Strait of Gibraltar. Earth and Planetary Science Letters 280 (2009) 13–50
    corecore