180 research outputs found

    Two loops calculation in chiral perturbation theory and the unitarization program of current algebra

    Get PDF
    In this paper we compare two loop Chiral Perturbation Theory (ChPT) calculation of pion-pion scattering with the unitarity second order correction to the current algebra soft-pion theorem. It is shown that both methods lead to the same analytic structure for the scattering amplitude.Comment: 13 pages, Revtex 3.0, no figures, submitted to Phys. Lett.

    Unitarized pion-nucleon scattering amplitude from inverse amplitude method

    Full text link
    In a recent work on low energy pion-nucleon scattering, instead of using chiral perturbation theory (ChPT) amplitude, we started from a pion-nucleon {\it soft-pion} result and used elastic unitarity directly as a dynamical constraint to construct first-order unitarity corrected amplitudes. The resulting amplitudes are crossing symmetric but, as the ChPT ones, satisfy only approximate unitarity relation. In the present work, we reconsider our approach and we apply the inverse amplitude method (IAM) in order to access the energy resonance region. We present the resulting S- and P-wave phase shifts that are shown to be in qualitative agreement with experimental data.Comment: 6 pages, 3 figure

    Symmetry breaking patterns of the 3-3-1 model at finite temperature

    Get PDF
    We consider the minimal version of an extension of the standard electroweak model based on the SU(3)c×SU(3)L×U(1)XSU(3)_c \times SU(3)_L \times U(1)_X gauge symmetry (the 3-3-1 model). We analyze the most general potential constructed from three scalars in the triplet representation of SU(3)LSU(3)_L, whose neutral components develop nonzero vacuum expectation values, giving mass for all the model's massive particles. {}For different choices of parameters, we obtain the particle spectrum for the two symmetry breaking scales: one where the SU(3)L×U(1)XSU(3)_L \times U(1)_X group is broken down to SU(2)L×U(1)YSU(2)_L\times U(1)_Y and a lower scale similar to the standard model one. Within the considerations used, we show that the model encodes two first-order phase transitions, respecting the pattern of symmetry restoration. The last transition, corresponding to the standard electroweak one, is found to be very weak first-order, most likely turning second-order or a crossover in practice. However, the first transition in this model can be strongly first-order, which might happen at a temperature not too high above the second one. We determine the respective critical temperatures for symmetry restoration for the model.Comment: 13 pages, 8 figures. Minor changes to match published versio

    Top quark forward-backward asymmetry from the 3−3−13-3-1 model

    Full text link
    The forward-backward asymmetry AFBA_{FB} in top quark pair production, measured at the Tevatron, is probably related to the contribution of new particles. The Tevatron result is more than a 2σ2\sigma deviation from the standard model prediction and motivates the application of alternative models introducing new states. However, as the standard model predictions for the total cross section σtt\sigma_{tt} and invariant mass distribution MttM_{tt} for this process are in good agreement with experiments, any alternative model must reproduce these predictions. These models can be placed into two categories: One introduces the s-channel exchange of new vector bosons with chiral couplings to the light quarks and to the top quark and another relies on the t-channel exchange of particles with large flavor-violating couplings in the quark sector. In this work we employ a model which introduces both s- and t-channel nonstandard contributions for the top quark pair production in proton antiproton collisions. We use the minimal version of the SU(3)C⊗SU(3)L⊗U(1)XSU(3)_C \otimes SU(3)_L \otimes U (1)_X model (3-3-1 model) that predicts the existence of a new neutral gauge boson, called Z′Z^\prime. This gauge boson has both flavor-changing couplings to up and top quarks and chiral coupling to the light quarks and to the top quark. This very peculiar model coupling can correct the AFBA_{FB} for top quark pair production for two ranges of Z′Z^\prime mass while leading to cross section and invariant mass distribution quite similar to the standard model ones. This result reinforces the role of the 3-3-1 model for any new physics effect.Comment: 12 pages, 4 figures, 2 table

    Pion-Pion Phase-Shifts and the Value of Quark-Antiquark Condensate in the Chiral Limit

    Get PDF
    We use low energy pion-pion phase-shifts in order to make distinction between the alternatives for the value of the quark-antiquark condensate B0B_0 in the chiral limit. We will consider the amplitude up to and including O(p4){\cal O}(p^4) contributions within the Standard and Generalized Chiral Perturbation Theory frameworks. They are unitarized by means of Pad\'e approximants in order to fit experimental phase-shifts in the resonance region. As the best fits correspond to α=β=1\alpha = \beta = 1, we conclude that pion-pion phase-shift analysis favors the standard ChPT scenario, which assumes just one, large leading order parameter 0_{_0}.Comment: 5 pages, 3 figures and 1 tabl

    Charged bilepton pair production at LHC including exotic quark contribution

    Get PDF
    AbstractThe production of W+W− pair in hadron colliders was calculated up to loop corrections by some authors in the Electroweak Standard Model (SM) framework. This production was also calculated, at the tree level, in some extensions of the SM such as the vector singlet, the fermion mirror fermion and the vector doublet models by considering the contributions of new neutral gauge bosons and exotic fermions. The obtained results for e+e− and pp collisions pointed out that the new physics contributions are quite important. This motivates us to calculate the production of a more massive charged gauge boson predicted by the SU(3)C×SU(3)L×U(1)X model (3-3-1 model). Thus, the aim of the present paper is to analyze the role played by of the extra gauge boson Z′ and of the exotic quarks, predicted in the minimal version of the 3-3-1 model, by considering the inclusive production of a pair of bileptons (V±) in the reaction p+p→V++V−+X, at the Large Hadron Collider (LHC) energies.Our results show that the correct energy behavior of the elementary cross section follows from the balance between the contributions of the extra neutral gauge boson with those from the exotic quarks. The extra neutral gauge boson induces flavor-changing neutral currents (FCNC) at tree level, and we have introduced the ordinary quark mixing matrices for the model when the first family transforms differently to the other two with respect to SU(3)L. We obtain a huge number of heavy bilepton pairs produced for two different values of the center of mass energy of the LHC
    • …
    corecore