107 research outputs found
A fast genetically encoded fluorescent sensor for faithful in vivo acetylcholine detection in mice, fish, worms and flies
Here we design and optimize a genetically encoded fluorescent indicator, iAChSnFR, for the ubiquitous neurotransmitter acetylcholine, based on a bacterial periplasmic binding protein. iAChSnFR shows large fluorescence changes, rapid rise and decay kinetics, and insensitivity to most cholinergic drugs. iAChSnFR revealed large transients in a variety of slice and in vivo preparations in mouse, fish, fly and worm. iAChSnFR will be useful for the study of acetylcholine in all organisms
A fast genetically encoded fluorescent sensor for faithful in vivo acetylcholine detection in mice, fish, worms and flies
Here we design and optimize a genetically encoded fluorescent indicator, iAChSnFR, for the ubiquitous neurotransmitter acetylcholine, based on a bacterial periplasmic binding protein. iAChSnFR shows large fluorescence changes, rapid rise and decay kinetics, and insensitivity to most cholinergic drugs. iAChSnFR revealed large transients in a variety of slice and in vivo preparations in mouse, fish, fly and worm. iAChSnFR will be useful for the study of acetylcholine in all organisms
Nicotine in the Endoplasmic Reticulum
Nicotine activates plasma membrane (PM) nicotinic
receptors (nAChRs), but also permeates into the endoplasmic
reticulum (ER) and cis-Golgi, and there binds to nascent nAChRs. Other psychiatric and abused drugs may also enter the ER and bind their classical targets. Further progress requires direct proof, quantification, and time resolution of these processes in live cells and in the brain of animals. Therefore, we are developing genetically encoded fluorescent biosensors to study the subcellular pharmacokinetics of neural drugs
Treatability Test Plan for an In Situ Biostimulation Reducing Barrier
This treatability test plan supports a new, integrated strategy to accelerate cleanup of chromium in the 100 Areas at the Hanford Site. This plan includes performing a field-scale treatability test for bioreduction of chromate, nitrate, and dissolved oxygen. In addition to remediating a portion of the plume and demonstrating reduction of electron acceptors in the plume, the data from this test will be valuable for designing a full-scale bioremediation system to apply at this and other chromium plumes at the Hanford Site
Nicotine in the Endoplasmic Reticulum
Nicotine activates plasma membrane (PM) nicotinic
receptors (nAChRs), but also permeates into the endoplasmic
reticulum (ER) and cis-Golgi, and there binds to nascent nAChRs. Other psychiatric and abused drugs may also enter the ER and bind their classical targets. Further progress requires direct proof, quantification, and time resolution of these processes in live cells and in the brain of animals. Therefore, we are developing genetically encoded fluorescent biosensors to study the subcellular pharmacokinetics of neural drugs
Recommended from our members
Determining the pharmacokinetics of nicotinic drugs in the endoplasmic reticulum using biosensors
Nicotine dependence is thought to arise in part because nicotine permeates into the endoplasmic reticulum (ER), where it binds to nicotinic receptors (nAChRs) and begins an âinside-outâ pathway that leads to up-regulation of nAChRs on the plasma membrane. However, the dynamics of nicotine entry into the ER are unquantified. Here, we develop a family of genetically encoded fluorescent biosensors for nicotine, termed iNicSnFRs. The iNicSnFRs are fusions between two proteins: a circularly permutated GFP and a periplasmic choline-/betaine-binding protein engineered to bind nicotine. The biosensors iNicSnFR3a and iNicSnFR3b respond to nicotine by increasing fluorescence at [nicotine] 75%. Reducing nicotine intake by 10-fold decreases activation to âŒ20%. iNicSnFR3a and iNicSnFR3b also sense the smoking cessation drug varenicline, revealing that varenicline also permeates into the ER within seconds. Our iNicSnFRs enable optical subcellular pharmacokinetics for nicotine and varenicline during an early event in the inside-out pathway
DĂ©bat avec les responsables scientifiques de lâaxe 3
ValĂ©rie Carayol : Vous avez dit que « dans la mĂȘlĂ©e du direct, nous participons plutĂŽt que nous symbolisons » et que « lâinduction se vit au prĂ©sent ». Hier, avec Wolfgang Settekorn qui nous a parlĂ© de mĂ©taphorisations mutuelles avec des exemples visuels et avec Philippe Breton qui nous a parlĂ© dâamalgame, on avait dĂ©jĂ esquissĂ© un rapprochement entre lâinduction et les dynamiques spatiales, pas obligatoirement une dynamique temporelle. Est-ce que vous pourriez prĂ©ciser cette idĂ©e du direct, ..
Strain and bioprocess improvement of a thermophilic anaerobe for the production of ethanol from wood
- âŠ