1,023 research outputs found

    Exploration by Confidence

    Get PDF
    Within formal concept analysis, attribute exploration is a powerful tool to semiautomatically check data for completeness with respect to a given domain. However, the classical formulation of attribute exploration does not take into account possible errors which are present in the initial data. We present in this work a generalization of attribute exploration based on the notion of confidence, which will allow for the exploration of implications which are not necessarily valid in the initial data, but instead enjoy a minimal confidence therein

    Learning Terminological Knowledge with High Confidence from Erroneous Data

    Get PDF
    Description logics knowledge bases are a popular approach to represent terminological and assertional knowledge suitable for computers to work with. Despite that, the practicality of description logics is impaired by the difficulties one has to overcome to construct such knowledge bases. Previous work has addressed this issue by providing methods to learn valid terminological knowledge from data, making use of ideas from formal concept analysis. A basic assumption here is that the data is free of errors, an assumption that can in general not be made for practical applications. This thesis presents extensions of these results that allow to handle errors in the data. For this, knowledge that is "almost valid" in the data is retrieved, where the notion of "almost valid" is formalized using the notion of confidence from data mining. This thesis presents two algorithms which achieve this retrieval. The first algorithm just extracts all almost valid knowledge from the data, while the second algorithm utilizes expert interaction to distinguish errors from rare but valid counterexamples
    • …
    corecore