15 research outputs found

    Mild exposure of RIN-5F β-cells to human islet amyloid polypeptide aggregates upregulates antioxidant enzymes via NADPH oxidase-RAGE: An hormetic stimulus

    Get PDF
    AbstractThe presence of amyloid aggregates of human islet amyloid polypeptide (hIAPP), a hallmark of type 2 diabetes, contributes to pancreatic ÎČ-cell impairment, where oxidative stress plays a key role. A contribution of NADPH oxidase to reactive oxygen species (ROS) generation after cell exposure to micromolar concentrations of hIAPP aggregates has been suggested. However, little is known about ÎČ-cells exposure to lower amounts of hIAPP aggregates, similar to those found in human pancreas. Thus, we aimed to investigate the events resulting from RIN-5F cells exposure to nanomolar concentrations of toxic hIAPP aggregates. We found an early and transient rise of NADPH oxidase activity resulting from increased Nox1 expression following the engagement of receptor for advanced glycation end-products (RAGE) by hIAPP aggregates. Unexpectedly, NADPH oxidase activation was not accompanied by a significant ROS increase and the lipoperoxidation level was significantly reduced. Indeed, cell exposure to hIAPP aggregates affected the antioxidant defences, inducing a significant increase of the expression and activity of catalase and glutathione peroxidase. We conclude that exposure of pancreatic ÎČ-cells to nanomolar concentrations of hIAPP aggregates for a short time induces an hormetic response via the RAGE-Nox1 axis; the latter stimulates the enzymatic antioxidant defences that preserve the cells against oxidative stress damage

    Enhanced ROS production by NADPH oxidase is correlated to changes in antioxidant enzyme activity in human heart failure

    Get PDF
    In pathological conditions, the balance between reactive oxygen species (ROS) and antioxidants may shift toward a relative increase of ROS, resulting in oxidative stress. Conflicting data are available on antioxidant defenses in human failing heart and they are limited to the left ventricle. Thus, we aimed to investigate and compare the source of oxidant and antioxidant enzyme activities in the right (RV) and left (LV) ventricles of human failing hearts. We found a significant increase in superoxide production only by NADPH oxidase in both failing ventricles, more marked in RV. Despite unchanged mRNA or protein expression, catalase (CAT) and glutathione peroxidase (GPx) activities were increased, and their increases reflected the levels of Tyr phosphorylation of the respective enzyme. Manganese superoxide dismutase (Mn-SOD) activity appeared unchanged. The increase in NADPH oxidase-dependent superoxide production positively correlated with the activation of both CAT and GPx. However, the slope of the linear correlation (m) was steeper in LV than in RV for GPx (LV: m = 2.416; RV: m = 1.485) and CAT (LV: m = 1.007; RV: m = 0.354). Accordingly, malondialdehyde levels, an indirect index of oxidative stress, were significantly higher in the RV than LV. We conclude that in human failing RV and LV, oxidative stress is associated with activation of antioxidant enzyme activity. This activation is likely due to post-translational modifications and more evident in LV. Overall, these findings suggest a reduced protection of RV against oxidative stress and its potential contribution to the progression toward overt heart failure. (C) 2009 Elsevier B.V. All rights reserved

    Monoamine Oxidase Is Overactivated in Left and Right Ventricles from Ischemic Hearts: An Intriguing Therapeutic Target

    Get PDF
    Growing evidence indicates that reactive oxygen species (ROS) may play a key role in human heart failure (HF). Monoamine oxidase (MAO) is emerging as a major ROS source in several cardiomyopathies. However, little is known about MAO activity in human failing heart and its relationship with redox imbalance. Therefore, we measured MAO activity in the left (LV) and in the right (RV) ventricle of human nonfailing (NF) and in end-stage ischemic (IHD) and nonischemic failing hearts. We found that both MAO isoforms (MAO-A/B) significantly increased in terms of activity and expression levels only in IHD ventricles. Catalase and aldehyde dehydrogenase-2 activities (ALDH-2), both implicated in MAO-catalyzed catecholamine catabolism, were significantly elevated in the failing LV, whereas, in the RV, statistical significance was observed only for ALDH-2. Oxidative stress markers levels were significantly increased only in the failing RV. Actin oxidation was significantly elevated in both failing ventricles and related to MAO-A activity and to functional parameters. These data suggest a close association between MAO-A-dependent ROS generation, actin oxidation, and ventricular dysfunction. This latter finding points to a possible pathogenic role of MAO-A in human myocardial failure supporting the idea that MAO-A could be a new therapeutic target in HF

    p53-PGC-1α Pathway Mediates Oxidative Mitochondrial Damage and Cardiomyocyte Necrosis Induced by Monoamine Oxidase-A Upregulation: Role in Chronic Left Ventricular Dysfunction in Mice

    No full text
    International audienceAIMS:Oxidative stress and mitochondrial dysfunction participate together in the development of heart failure (HF). mRNA levels of monoamine oxidase-A (MAO-A), a mitochondrial enzyme that produces hydrogen peroxide (H(2)O(2)), increase in several models of cardiomyopathies. Therefore, we hypothesized that an increase in cardiac MAO-A could cause oxidative stress and mitochondrial damage, leading to cardiac dysfunction. In the present study, we evaluated the consequences of cardiac MAO-A augmentation on chronic oxidative damage, cardiomyocyte survival, and heart function, and identified the intracellular pathways involved.RESULTS:We generated transgenic (Tg) mice with cardiac-specific MAO-A overexpression. Tg mice displayed cardiac MAO-A activity levels similar to those found in HF and aging. As expected, Tg mice showed a significant decrease in the cardiac amounts of the MAO-A substrates serotonin and norepinephrine. This was associated with enhanced H(2)O(2) generation in situ and mitochondrial DNA oxidation. As a consequence, MAO-A Tg mice demonstrated progressive loss of cardiomyocytes by necrosis and ventricular failure, which were prevented by chronic treatment with the MAO-A inhibitor clorgyline and the antioxidant N-acetyl-cystein. Interestingly, Tg hearts exhibited p53 accumulation and downregulation of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a master regulator of mitochondrial function. This was concomitant with cardiac mitochondrial ultrastructural defects and ATP depletion. In vitro, MAO-A adenovirus transduction of neonatal cardiomyocytes mimicked the results in MAO-A Tg mice, triggering oxidative stress-dependent p53 activation, leading to PGC-1α downregulation, mitochondrial impairment, and cardiomyocyte necrosis.INNOVATION AND CONCLUSION:We provide the first evidence that MAO-A upregulation in the heart causes oxidative mitochondrial damage, p53-dependent repression of PGC-1α, cardiomyocyte necrosis, and chronic ventricular dysfunction
    corecore