40 research outputs found
Parallel numerical methods for large-scale DAE systems
For plantwide dynamic simulation in chemical process industry, parallel numerical methods using a divide and conquer strategy are considered. An approach for the numerical solution of initial value problems for large systems of differential algebraic equations (DAEs) arising from industrial applications and its realization on parallel computers with shared memory is discussed. The system is partitioned into blocks and then it is extended appropriately, such that block-structured Newton-type methods can be applied which enable the application of relaxation techniques. This approach has gained considerable speedup factors for the dynamic simulation of various large-scale distillation plants, covering systems with up to 60 000 equations
Convergence criteria for waveform iteration methods applied to partitioned DAE systems in chemical process simulation
The application of block waveform iteration methods to initial value problems for implicit DAE systems of index 1 arising in chemical process simulation is considered. These methods permit the concurrent treatment of blocks of subsystems of the entire system gaining a coarse granular parallelism. Their convergence properties strongly depend on the assignment of variables to equations and the partitioning of the system into subsystem blocks. The convergence of block waveform iteration methods applied to semiexplicit DAE sytems of index 1 is proved. The convergence conditions are given in such a way that only the single blocksystems have to satisfy some corresponding conditions. It is shown that these conditions are fulfilled for a simplified modeling of distillation columns. Resulting from the convergence considerations an assignment and partitioning algorithm is given. A prototype of a waveform-iteration code has been implemented and tested by means of examples included in the user package of the chemical process simulator SPEEDUP
Calibration methods for gas turbine performance models
The WIAS software package BOP is used to simulate gas turbine models. In order to make accurate predictions the underlying models need to be calibrated. This study compares different strategies of model calibration. These are the deterministic optimization tools as nonlinear least squares (MSO) and the sparsity promoting variant LASSO, but also the probabilistic (Bayesian) calibration. The latter allows for the quantification of the inherent uncertainty, and it gives rise to a surrogate uncertainty measure in the MSO tool. The implementation details are accompanied with a numerical case study, which highlights the advantages and drawbacks of each of the proposed calibration methods
Calibration methods for gas turbine performance models
The WIAS software package BOP is used to simulate gas turbine models. In order to make accurate predictions the underlying models need to be calibrated. This study compares different strategies of model calibration. These are the deterministic optimization tools as non-linear least squares (MSO) and the sparsity promoting variant LASSO, but also the probabilistic (Bayesian) calibration. The latter allows for the quantification of the inherent uncertainty, and it gives rise to a surrogate uncertainty measure in the MSO tool. The implementation details are accompanied with a numerical case study, which highlights the advantages and drawbacks of each of the proposed calibration methods
Heterogeneous dynamic process flowsheet simulation of chemical plants
For large-scale dynamic simulation problems in chemical process engineering, a heterogeneous simulation concept is described which allows to distribute the solution of the models of coupled dynamic subprocesses to a computer network. The main principle of such a technique is to solve the submodels of an overall model independently of each other on subsequent time intervals. This is done by estimating the vector of input variables of the submodels, calculating the corresponding time behaviour of the output variables concurrently, and matching the time profiles of the interconnecting variables of the process flowsheet iteratively. Therefore, accelerated waveform iteration methods are considered, using Broyden- and block-Broyden-type updates. The simulation concept is investigated especially in the case that the submodels do not provide input-output sensitivities
Numerische Lösung großer strukturierter DAE-Systeme der chemischen Prozeßsimulation
Parallelizable numerical methods for solving large scale DAE systems are developed at the level of differential, nonlinear and linear equations. For this the subsystem-wise structure of the DAE systems based on unit-oriented modelling is explored. Partitionings are used to parallelize waveform relaxation and structured Newton methods. Initial values are computed with a modified Newton method. To solve large sparse systems of linear equations a special Gaussian elimination method is used. The algorithms were implemented on a CRAY C90 vector computer, as well as on both, moderately parallel CRAY J90 vector computers and massively parallel CRAY T3D machines. The methods were tested using several real life examples
On Measuring Non-Recursive Trade-Offs
We investigate the phenomenon of non-recursive trade-offs between
descriptional systems in an abstract fashion. We aim at categorizing
non-recursive trade-offs by bounds on their growth rate, and show how to deduce
such bounds in general. We also identify criteria which, in the spirit of
abstract language theory, allow us to deduce non-recursive tradeoffs from
effective closure properties of language families on the one hand, and
differences in the decidability status of basic decision problems on the other.
We develop a qualitative classification of non-recursive trade-offs in order to
obtain a better understanding of this very fundamental behaviour of
descriptional systems
Resilience trinity: safeguarding ecosystem functioning and services across three different time horizons and decision contexts
Ensuring ecosystem resilience is an intuitive approach to safeguard the functioning of ecosystems and hence the future provisioning of ecosystem services (ES). However, resilience is a multi-faceted concept that is difficult to operationalize. Focusing on resilience mechanisms, such as diversity, network architectures or adaptive capacity, has recently been suggested as means to operationalize resilience. Still, the focus on mechanisms is not specific enough. We suggest a conceptual framework, resilience trinity, to facilitate management based on resilience mechanisms in three distinctive decision contexts and time-horizons: i) reactive, when there is an imminent threat to ES resilience and a high pressure to act, ii) adjustive, when the threat is known in general but there is still time to adapt management, and iii) provident, when time horizons are very long and the nature of the threats is uncertain, leading to a low willingness to act. Resilience has different interpretations and implications at these different time horizons, which also prevail in different disciplines. Social ecology, ecology, and engineering are often implicitly focussing on provident, adjustive, or reactive resilience, respectively, but these different notions and of resilience and their corresponding social, ecological, and economic trade-offs need to be reconciled. Otherwise, we keep risking unintended consequences of reactive actions, or shying away from provident action because of uncertainties that cannot be reduced. The suggested trinity of time horizons and their decision contexts could help ensuring that longer-term management actions are not missed while urgent threats to ES are given priority
Anterior Thalamic High Frequency Band Activity Is Coupled with Theta Oscillations at Rest
Cross-frequency coupling (CFC) between slow and fast brain rhythms, in the form of phase–amplitude coupling (PAC), is proposed to enable the coordination of neural oscillatory activity required for cognitive processing. PAC has been identified in the neocortex and mesial temporal regions, varying according to the cognitive task being performed and also at rest. PAC has also been observed in the anterior thalamic nucleus (ATN) during memory processing. The thalamus is active during the resting state and has been proposed to be involved in switching between task-free cognitive states such as rest, in which attention is internally-focused, and externally-focused cognitive states, in which an individual engages with environmental stimuli. It is unknown whether PAC is an ongoing phenomenon during the resting state in the ATN, which is modulated during different cognitive states, or whether it only arises during the performance of specific tasks. We analyzed electrophysiological recordings of ATN activity during rest from seven patients who received thalamic electrodes implanted for treatment of pharmacoresistant focal epilepsy. PAC was identified between theta (4–6 Hz) phase and high frequency band (80–150 Hz) amplitude during rest in all seven patients, which diminished during engagement in tasks involving an external focus of attention. The findings are consistent with the proposal that theta–gamma coupling in the ATN is an ongoing phenomenon, which is modulated by task performance