4 research outputs found
Gene Therapy in a Humanized Mouse Model of Familial Hypercholesterolemia Leads to Marked Regression of Atherosclerosis
Familial hypercholesterolemia (FH) is an autosomal codominant disorder caused by mutations in the low-density lipoprotein receptor (LDLR) gene. Homozygous FH patients (hoFH) have severe hypercholesterolemia leading to life threatening atherosclerosis in childhood and adolescence. Mice with germ line interruptions in the Ldlr and Apobec1 genes (Ldlr(-/-)Apobec1(-/-)) simulate metabolic and clinical aspects of hoFH, including atherogenesis on a chow diet.In this study, vectors based on adeno-associated virus 8 (AAV8) were used to deliver the gene for mouse Ldlr (mLDLR) to the livers of Ldlr(-/-)Apobec1(-/-) mice. A single intravenous injection of AAV8.mLDLR was found to significantly reduce plasma cholesterol and non-HDL cholesterol levels in chow-fed animals at doses as low as 3×10(9) genome copies/mouse. Whereas Ldlr(-/-)Apobec1(-/-) mice fed a western-type diet and injected with a control AAV8.null vector experienced a further 65% progression in atherosclerosis over 2 months compared with baseline mice, Ldlr(-/-)Apobec1(-/-) mice treated with AAV8.mLDLR realized an 87% regression of atherosclerotic lesions after 3 months compared to baseline mice. Immunohistochemical analyses revealed a substantial remodeling of atherosclerotic lesions.Collectively, the results presented herein suggest that AAV8-based gene therapy for FH may be feasible and support further development of this approach. The pre-clinical data from these studies will enable for the effective translation of gene therapy into the clinic for treatment of FH
Computational Fluid Dynamic Analysis of Flow Velocity Waveform Notching in Umbilical Arteries
Umbilical artery Doppler velocimetry waveform notching has long been associated with umbilical cord abnormalities, such as distortion, torsion, and/or compression (i.e., constriction). The physical mechanism by which the notching occurs has not been elucidated. Flow velocity waveforms (FVWs) from two-dimensional pulsatile flows in a constricted channel approximating a compressed umbilical cord are analyzed, leading to a clear relationship between the notching and the constriction. Two flows with an asymmetric, semi-elliptical constriction are computed using a stabilized finite-element method. In one case, the constriction blocks 75% of the flow passage, and in the other the constriction blocks 85%. Channel width and prescribed flow rates at the channel inflow are consistent with typical cord diameters and flow rates reported in the literature. Computational results indicate that waveform notching is caused by flow separation induced by the constriction, giving rise to a vortex (core) wave and associated eddies. Notching in FVWs based on centerline velocity (centerline FVW) is directly related to the passage of an eddy over the point of measurement on the centerline. Notching in FVWs based on maximum cross-sectional velocity (envelope FVW) is directly related to acceleration and deceleration of the fluid along the vortex wave. Results show that notching in envelope FVW is not present in flows with less than a 75% constriction. Furthermore, notching disappears as the vortex wave is attenuated at distances downstream of the constriction. In the flows with 75 and 85% constriction, notching of the envelope FVW disappears at ∼3.8 and ∼4.3 cm (respectively) downstream of the constriction. These results are of significant medical importance, given that envelope FVW is typically measured by commercial Doppler systems
Computational Fluid Dynamic Analysis of Flow Velocity Waveform Notching in Umbilical Arteries
Umbilical artery Doppler velocimetry waveform notching has long been associated with umbilical cord abnormalities, such as distortion, torsion, and/or compression (i.e., constriction). The physical mechanism by which the notching occurs has not been elucidated. Flow velocity waveforms (FVWs) from two-dimensional pulsatile flows in a constricted channel approximating a compressed umbilical cord are analyzed, leading to a clear relationship between the notching and the constriction. Two flows with an asymmetric, semi-elliptical constriction are computed using a stabilized finite-element method. In one case, the constriction blocks 75% of the flow passage, and in the other the constriction blocks 85%. Channel width and prescribed flow rates at the channel inflow are consistent with typical cord diameters and flow rates reported in the literature. Computational results indicate that waveform notching is caused by flow separation induced by the constriction, giving rise to a vortex (core) wave and associated eddies. Notching in FVWs based on centerline velocity (centerline FVW) is directly related to the passage of an eddy over the point of measurement on the centerline. Notching in FVWs based on maximum cross-sectional velocity (envelope FVW) is directly related to acceleration and deceleration of the fluid along the vortex wave. Results show that notching in envelope FVW is not present in flows with less than a 75% constriction. Furthermore, notching disappears as the vortex wave is attenuated at distances downstream of the constriction. In the flows with 75 and 85% constriction, notching of the envelope FVW disappears at ∼3.8 and ∼4.3 cm (respectively) downstream of the constriction. These results are of significant medical importance, given that envelope FVW is typically measured by commercial Doppler systems
Computational fluid dynamic analysis of flow velocity waveform notching in umbilical arteries
Umbilical artery Doppler velocimetry waveform notching has long been associated with umbilical cord abnormalities, such as distortion, torsion, and/or compression (i.e., constriction). The physical mechanism by which the notching occurs has not been elucidated. Flow velocity waveforms (FVWs) from two-dimensional pulsatile flows in a constricted channel approximating a compressed umbilical cord are analyzed, leading to a clear relationship between the notching and the constriction. Two flows with an asymmetric, semi-elliptical constriction are computed using a stabilized finite-element method. In one case, the constriction blocks 75% of the flow passage, and in the other the constriction blocks 85%. Channel width and prescribed flow rates at the channel inflow are consistent with typical cord diameters and flow rates reported in the literature. Computational results indicate that waveform notching is caused by flow separation induced by the constriction, giving rise to a vortex (core) wave and associated eddies. Notching in FVWs based on centerline velocity (centerline FVW) is directly related to the passage of an eddy over the point of measurement on the centerline. Notching in FVWs based on maximum cross-sectional velocity (envelope FVW) is directly related to acceleration and deceleration of the fluid along the vortex wave. Results show that notching in envelope FVW is not present in flows with less than a 75% constriction. Furthermore, notching disappears as the vortex wave is attenuated at distances downstream of the constriction. In the flows with 75 and 85% constriction, notching of the envelope FVW disappears at ∼3.8 and ∼4.3 cm (respectively) downstream of the constriction. These results are of significant medical importance, given that envelope FVW is typically measured by commercial Doppler systems