76 research outputs found

    Assessment of algorithms for mitosis detection in breast cancer histopathology images

    Get PDF
    The proliferative activity of breast tumors, which is routinely estimated by counting of mitotic figures in hematoxylin and eosin stained histology sections, is considered to be one of the most important prognostic markers. However, mitosis counting is laborious, subjective and may suffer from low inter-observer agreement. With the wider acceptance of whole slide images in pathology labs, automatic image analysis has been proposed as a potential solution for these issues. In this paper, the results from the Assessment of Mitosis Detection Algorithms 2013 (AMIDA13) challenge are described. The challenge was based on a data set consisting of 12 training and 11 testing subjects, with more than one thousand annotated mitotic figures by multiple observers. Short descriptions and results from the evaluation of eleven methods are presented. The top performing method has an error rate that is comparable to the inter-observer agreement among pathologists

    Fasciola hepatica calcium-binding protein FhCaBP2: structure of the dynein light chain-like domain

    Get PDF
    The common liver fluke Fasciola hepatica causes an increasing burden on human and animal health, partly because of the spread of drug-resistant isolates. As a consequence, there is considerable interest in developing new drugs to combat liver fluke infections. A group of potential targets is a family of calcium-binding proteins which combine an N-terminal domain with two EF-hand motifs and a C-terminal domain with predicted similarity to dynein light chains (DLC-like domain)

    Oxidative Modifications of Rat Liver Cell Components During Fasciola hepatica Infection

    Get PDF
    The aim of this paper was to assess the influence of Fasciola hepatica infection on oxidative modifications of rat liver cell components such as proteins and lipids. Wistar rats were infected per os with 30 metacercariae of F. hepatica. Activities and concentrations of liver damage markers were determined in the 4th, 7th, and 10th week postinfection (wpi). A decrease in antioxidant capacity of the host liver, manifested by a decrease in total antioxidant status (TAS), was observed. Diminution of antioxidant abilities resulted in enhanced oxidative modifications of lipids and proteins. F. hepatica infection enhanced lipid peroxidation, which was visible in the statistically significant increase in the level of different lipid peroxidation products such as conjugated dienes (CDs), lipid hydroperoxides (LOOHs), malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE). The level of protein modification markers in the rat liver was also significantly changed and the most intensified changes were observed at seventh week postinfection. Concentration of carbonyl groups and dityrosine was significantly increased, whereas the level of tryptophan and sulfhydryl and amino groups was decreased. Changes in the antioxidant abilities of the liver and in the lipid and protein structure of the cell components resulted in destruction of the function of the liver. F. hepatica infection was accompanied by raising serum activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) as markers of liver damage. A significant decrease in lysosomal as well as in the total activity of cathepsin B during fasciolosis was also observed

    Lymnaea schirazensis, an Overlooked Snail Distorting Fascioliasis Data: Genotype, Phenotype, Ecology, Worldwide Spread, Susceptibility, Applicability

    Get PDF
    BACKGROUND: Lymnaeid snails transmit medical and veterinary important trematodiases, mainly fascioliasis. Vector specificity of fasciolid parasites defines disease distribution and characteristics. Different lymnaeid species appear linked to different transmission and epidemiological patterns. Pronounced susceptibility differences to absolute resistance have been described among lymnaeid populations. When assessing disease characteristics in different endemic areas, unexpected results were obtained in studies on lymnaeid susceptibility to Fasciola. We undertook studies to understand this disease transmission heterogeneity. METHODOLOGY/PRINCIPAL FINDINGS: A ten-year study in Iran, Egypt, Spain, the Dominican Republic, Mexico, Venezuela, Ecuador and Peru, demonstrated that such heterogeneity is not due to susceptibility differences, but to a hitherto overlooked cryptic species, Lymnaea schirazensis, confused with the main vector Galba truncatula and/or other Galba/Fossaria vectors. Nuclear rDNA and mtDNA sequences and phylogenetic reconstruction highlighted an old evolutionary divergence from other Galba/Fossaria species, and a low intraspecific variability suggesting a recent spread from one geographical source. Morphometry, anatomy and egg cluster analyses allowed for phenotypic differentiation. Selfing, egg laying, and habitat characteristics indicated a migration capacity by passive transport. Studies showed that it is not a vector species (n = 8572 field collected, 20 populations): snail finding and penetration by F. hepatica miracidium occur but never lead to cercarial production (n = 338 experimentally infected). CONCLUSIONS/SIGNIFICANCE: This species has been distorting fasciolid specificity/susceptibility and fascioliasis geographical distribution data. Hence, a large body of literature on G. truncatula should be revised. Its existence has henceforth to be considered in research. Genetic data on livestock, archeology and history along the 10,000-year post-domestication period explain its wide spread from the Neolithic Fertile Crescent. It is an efficient biomarker for the follow-up of livestock movements, a crucial aspect in fascioliasis emergence. It offers an outstanding laboratory model for genetic studies on susceptibility/resistance in F. hepatica/lymnaeid interaction, a field of applied research with disease control perspectives

    Computer vision for microscopy diagnosis of malaria

    Get PDF
    This paper reviews computer vision and image analysis studies aiming at automated diagnosis or screening of malaria infection in microscope images of thin blood film smears. Existing works interpret the diagnosis problem differently or propose partial solutions to the problem. A critique of these works is furnished. In addition, a general pattern recognition framework to perform diagnosis, which includes image acquisition, pre-processing, segmentation, and pattern classification components, is described. The open problems are addressed and a perspective of the future work for realization of automated microscopy diagnosis of malaria is provided

    DNA multigene characterization of Fasciola hepatica and Lymnaea neotropica and its fascioliasis transmission capacity in Uruguay, with historical correlation, human report review and infection risk analysis

    Get PDF
    Fascioliasis is a highly pathogenic zoonotic disease emerging in recent decades, in part due to the effects of climate and global changes. South America is the continent presenting more numerous human fascioliasis endemic areas and the highest Fasciola hepatica infection prevalences and intensities known in humans. These serious public health scenarios appear mainly linked to altitude areas in Andean countries, whereas lowland areas of non-Andean countries, such as Uruguay, only show sporadic human cases or outbreaks. To understand this difference, we characterized F. hepatica from cattle and horses and lymnaeids of Uruguay by sequencing of ribosomal DNA ITS-2 and ITS-1 spacers and mitochondrial DNA cox1, nad1 and 16S genes. Results indicate that vectors belong to Lymnaea neotropica instead of to Lymnaea viator, as always reported from Uruguay. Our correlation of fasciolid and lymnaeid haplotypes with historical data on the introduction and spread of livestock species into Uruguay allow to understand the molecular diversity detected. We study the life cycle and transmission features of F. hepatica by L. neotropica of Uruguay under standardized experimental conditions to enable a comparison with the transmission capacity of F. hepatica by Galba truncatula at very high altitude in Bolivia. Results demonstrate that although L. neotropica is a highly efficient vector in the lowlands, its transmission capacity is markedly lower than that of G. truncatula in the highlands. On this baseline, we review the human fascioliasis cases reported in Uruguay and analyze the present and future risk of human infection in front of future climate change estimations

    A Portrait of the Transcriptome of the Neglected Trematode, Fasciola gigantica—Biological and Biotechnological Implications

    Get PDF
    Fasciola gigantica (Digenea) is an important foodborne trematode that causes liver fluke disease (fascioliasis) in mammals, including ungulates and humans, mainly in tropical climatic zones of the world. Despite its socioeconomic impact, almost nothing is known about the molecular biology of this parasite, its interplay with its hosts, and the pathogenesis of fascioliasis. Modern genomic technologies now provide unique opportunities to rapidly tackle these exciting areas. The present study reports the first transcriptome representing the adult stage of F. gigantica (of bovid origin), defined using a massively parallel sequencing-coupled bioinformatic approach. From >20 million raw sequence reads, >30,000 contiguous sequences were assembled, of which most were novel. Relative levels of transcription were determined for individual molecules, which were also characterized (at the inferred amino acid level) based on homology, gene ontology, and/or pathway mapping. Comparisons of the transcriptome of F. gigantica with those of other trematodes, including F. hepatica, revealed similarities in transcription for molecules inferred to have key roles in parasite-host interactions. Overall, the present dataset should provide a solid foundation for future fundamental genomic, proteomic, and metabolomic explorations of F. gigantica, as well as a basis for applied outcomes such as the development of novel methods of intervention against this neglected parasite

    Anxiety and Depression in Adults with Autism Spectrum Disorder: A Systematic Review and Meta-analysis

    Get PDF
    Adults with autism spectrum disorder (ASD) are thought to be at disproportionate risk of developing mental health comorbidities, with anxiety and depression being considered most prominent amongst these. Yet, no systematic review has been carried out to date to examine rates of both anxiety and depression focusing specifically on adults with ASD. This systematic review and meta-analysis examined the rates of anxiety and depression in adults with ASD and the impact of factors such as assessment methods and presence of comorbid intellectual disability (ID) diagnosis on estimated prevalence rates. Electronic database searches for studies published between January 2000 and September 2017 identified a total of 35 studies, including 30 studies measuring anxiety (n = 26 070; mean age = 30.9, s.d. = 6.2 years) and 29 studies measuring depression (n = 26 117; mean age = 31.1, s.d. = 6.8 years). The pooled estimation of current and lifetime prevalence for adults with ASD were 27% and 42% for any anxiety disorder, and 23% and 37% for depressive disorder. Further analyses revealed that the use of questionnaire measures and the presence of ID may significantly influence estimates of prevalence. The current literature suffers from a high degree of heterogeneity in study method and an overreliance on clinical samples. These results highlight the importance of community-based studies and the identification and inclusion of well-characterized samples to reduce heterogeneity and bias in estimates of prevalence for comorbidity in adults with ASD and other populations with complex psychiatric presentations
    corecore