36 research outputs found
Phase-resolved magnetomotive OCT for imaging nanomolar concentrations of magnetic nanoparticles in tissues
Magnetic nanoparticles (MNPs) are increasingly important in magnetic resonance and biomedical optical imaging. We describe a method for imaging MNPs by detecting nanoscale displacements using a phaseresolved spectral-domain optical coherence tomography (OCT) system. Biological tissues and phantoms are exposed to ∼800 G magnetic fields modulated at 56 and 100 Hz to mechanically actuate embedded iron oxide MNPs (∼20 nm diameter). Sensitivity to 27 μg/g (∼2 nM) MNPs within tissue phantoms is achieved by filtering paramagnetic from diamagnetic vibrations. We demonstrate biological feasibility by imaging topically applied MNPs during their diffusion into an excised rat tumor over a 2 hour time period
Expression order of alpha-v and beta-3 integrin subunits in the N-methyl-N-nitrosourea-induced rat mammary tumor model
We investigated the developmental time course of molecular expression of αvβ3 subunits in a carcinogen-induced rat mammary tumor model for human ductal carcinoma in situ (DCIS). Tumors during various stages of growth (from 2.0 cm) were analyzed immunohistochemically for the expression of the αvβ3 integrin and its subunits. In general, the expression profiles of these integrin subunits were directly proportional to the size of the tumor. The pattern of immunostaining revealed that anti-αvβ3 monoclonal antibody binds to specific sites of tumor sections, forming isolated stained patches. This isolated patch pattern was found in more developed larger tumors. This could be due to the fact that the integrin molecule might be involved in migration and nesting of tumor cells into specific regions to form DCIS or intraductal carcinoma. Results also showed that the αv subunit expresses earlier than the β3 subunit. These data provide insight into tumor cell biology and developmental characteristics that will guide the future construction and use of targeted contrast and therapeutic agents capable of tracking, imaging, or treating a tumor at the earliest stage of formation
Optical probes and techniques for molecular contrast enhancement in coherence imaging
Optics has played a key role in the rapidly developing field, of molecular imaging. The spectroscopic nature and high-resolution imaging capabilities of light provide a means for probing biological morphology and function at the cellular and molecular levels. While the use of bioluminescent and fluorescent probes has become a mainstay in optical molecular imaging, a large number of other optical imaging modalities exist that can be included in this emerging field. In vivo imaging technologies such as optical coherence tomography and reflectance confocal microscopy have had limited use of molecular probes. In the last few years, novel nonfluorescent and nonbioluminescent molecular imaging probes have been developed that will initiate new directions in coherent optical molecular imaging. Classes of probes reviewed in this work include those that alter the local optical scattering or absorption properties of the tissue, those that modulate these local optical properties in a predictable manner, and those that are detected utilizing spectroscopic optical coherence tomography (OCT) principles. In addition to spectroscopic OCT, novel nonlinear interferometric imaging techniques have recently been developed to detect endogenous molecules. Probes and techniques designed for coherent molecular imaging are likely to improve the detection and diagnostic capabilities of OCT
Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography
Plasmon-resonant gold nanorods (GNRs) can serve as imaging agents for spectroscopic optical coherence tomography (SOCT). The aspect ratio of the GNRs is adjusted for maximum absorption in the far red to create a partial spectral overlap with the short-wavelength edge of the near-infrared SOCT imaging band. The spectroscopic absorption profile of the GNRs is incorporated into a depth-resolved algorithm for mapping the relative GNR density within OCT images. This technique enables us to image GNR distributions in excised human breast carcinomas, demonstrating their potential as OCT contrast agents in heterogeneous, highly scattering tissues
Optical micro-scale mapping of dynamic biomechanical tissue properties
Mechanical forces such as adhesion, shear stress and compression play crucial roles in tissue growth, patterning and development. To understand the role of these mechanical stimuli, it is of great importance to measure biomechanical properties of developing, engineered, and natural tissues. To enable these measurements on the micro-scale, a novel, dynamic, non-invasive, high-speed optical coherence elastography (OCE) system has been developed utilizing spectral-domain optical coherence tomography (OCT) and a mechanical wave driver. Experimental results of OCE on silicone phantoms are in good agreement with those obtained from a standardized indentation method. Using phase-resolved imaging, we demonstrate OCE can map dynamic elastic moduli of normal and neoplastic ex vivo human breast tissue with a sensitivity of 0.08%. Spatial micro-scale mapping of elastic moduli of tissue offers the potential for basic science and clinical investigations into the role biomechanics play in health and disease
Magnetomotive nanoparticle transducers for optical rheology of viscoelastic materials
The availability of a real-time non-destructive modality to interrogate the mechanical properties of viscoelastic materials would facilitate many new investigations. We introduce a new optical method for measuring elastic properties of samples which employs magnetite nanoparticles as perturbative agents. Magnetic nanoparticles distributed in silicone-based samples are displaced upon probing with a small external magnetic field gradient and depth-resolved optical coherence phase shifts allow for the tracking of scatterers in the sample with nanometer-scale sensitivity. The scatterers undergo underdamped oscillations when the magnetic field is applied step-wise, allowing for the measurement of the natural frequencies of oscillation of the samples. Validation of the measurements is accomplished using a commercial indentation apparatus to determine the elastic moduli of the samples. This real-time non-destructive technique constitutes a novel way of probing the natural frequencies of viscoelastic materials in which magnetic nanoparticles can be introduced
Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography
Plasmon-resonant gold nanorods are demonstrated as low back-scattering albedo contrast agents for optical coherence tomography (OCT). We define the backscattering albedo, a′, as the ratio of the backscattering to extinction coefficient. Contrast agents which modify a' within the host tissue phantoms are detected with greater sensitivity by the differential OCT measurement of both a′ and extinction. Optimum sensitivity is achieved by maximizing the difference between contrast agents and tissue, |a′ca - a′tiss|. Low backscattering albedo gold nanorods (14 × 44 nm; λmax = 780 nm) within a high backscattering albedo tissue phantom with an uncertainty in concentration of 20% (randomized 2±0.4% intralipid) were readily detected at 82 ppm (by weight) in a regime where extinction alone could not discriminate nanorods. The estimated threshold of detection was 30 ppm
Optical coherence tomography: A review of clinical development from bench to bedside
Since its introduction, optical coherence tomography (OCT) technology has advanced from the laboratory bench to the clinic and back again. Arising from the fields of low coherence interferometry and optical time- and frequency-domain reflectometry, OCT was initially demonstrated for retinal imaging and followed a unique path to commercialization for clinical use. Concurrently, significant technological advances were brought about from within the research community, including improved laser sources, beam delivery instruments, and detection schemes. While many of these technologies improved retinal imaging, they also allowed for the application of OCT to many new clinical areas. As a result, OCT has been clinically demonstrated in a diverse set of medical and surgical specialties, including gastroenterology, dermatology, cardiology, and oncology, among others. The lessons learned in the clinic are currently spurring a new set of advances in the laboratory that will again expand the clinical use of OCT by adding molecular sensitivity, improving image quality, and increasing acquisition speeds. This continuous cycle of laboratory development and clinical application has allowed the OCT technology to grow at a rapid rate and represents a unique model for the translation of biomedical optics to the patient bedside. This work presents a brief history of OCT development, reviews current clinical applications, discusses some clinical translation challenges, and reviews laboratory developments poised for future clinical application
Fc-directed antibody conjugation of magnetic nanoparticles for enhanced molecular targeting
In this study, we report the fabrication of engineered iron oxide magnetic nanoparticles (MNPs) functionalized with anti-human epidermal growth factor receptor type 2 (HER2) antibody to target the tumor antigen HER2. The Fc-directed conjugation of antibodies to the MNPs aids their efficient immunospecific targeting through free Fab portions. The directional specificity of conjugation was verified on a macrophage cell line. Immunofluorescence studies on macrophages treated with functionalized MNPs and free anti-HER2 antibody revealed that the antibody molecules bind to the MNPs predominantly through their Fc portion. Different cell lines with different HER2 expression levels were used to test the specificity of our functionalized nanoprobe for molecular targeting applications. The results of cell line targeting demonstrate that these engineered MNPs are able to differentiate between cell lines with different levels of HER2 expression
Magnetic contrast agents for optical coherence tomography
The magneto-mechanical effect is exploited as a means of producing background-free contrast in optical coherence tomography (OCT). Contrast agents consisting of iron-oxide particles and protein microspheres encapsulating colloidal iron-oxide have a sufficiently high magnetic susceptibility to be detected by modulation of a magnetic field gradient using a small solenoid coil. The externally-applied magnetic field mechanically rotates or translates these highly scattering contrast agents within the sample at the modulation frequency, which is subsequently detected as amplitude modulation of the OCT signal. Pairs of sequential axial scans (A-lines) are acquired with the magnetic field on and off, allowing one to build up a pair of images corresponding to the "on" and "off" states of the magnetic field. These image pairs are differenced to look for magnetic-specific effects, allowing one to distinguish the magnetic contrast agents from non-magnetic structures within the sample with a signal-to-background ratio of ∼23dB. This technique has the potential to be very powerful when coupled with targeting for in vivo molecular imaging. To evaluate this potential we demonstrate in vitro imaging of magnetically-labeled macrophage cells embedded in a 3D tissue phantom, in vitro tissue doped with contrast agents, and in vivo imaging of Xenopus laevis (African frog) tadpoles