1,092 research outputs found
Time-Series Ensemble Photometry and the Search for Variable Stars in the Open Cluster M11
This work presents the first large-scale photometric variability survey of
the intermediate age (~200 Myr) open cluster M11. Thirteen nights of data over
two observing seasons were analyzed (using crowded field and ensemble
photometry techniques) to obtain high relative precision photometry. In this
study we focus on the detection of candidate member variable stars for
follow-up studies. A total of 39 variable stars were detected and can be
categorized as follows: 1 irregular (probably pulsating) variable, 6 delta
Scuti variables, 14 detached eclipsing binary systems, 17 W UMa variables, and
1 unidentified/candidate variable. While previous proper motion studies allow
for cluster membership determination for the brightest stars, we find that
membership determination is significantly hampered below V=15,R=15.5 by the
large population of field stars overlapping the cluster MS. Of the brightest
detected variables that have a high likelihood of cluster membership, we find
five systems where further work could help constrain theoretical stellar
models, including one potential W UMa member of this young cluster.Comment: 38 pages, 13 figures, accepted for December 2005 AJ, high-resolution
version available upon reques
Modelling planktic foraminifer growth and distribution using an ecophysiological multi-species approach
International audienceWe present an eco-physiological model reproducing the growth of eight foraminifer species (Neogloboquad-rina pachyderma, Neogloboquadrina incompta, Neoglobo-quadrina dutertrei, Globigerina bulloides, Globigeri-noides ruber, Globigerinoides sacculifer, Globigerinella si-phonifera and Orbulina universa). By using the main physiological rates of foraminifers (nutrition, respiration, symbi-otic photosynthesis), this model estimates their growth as a function of temperature, light availability, and food concentration. Model parameters are directly derived or calibrated from experimental observations and only the influence of food concentration (estimated via Chlorophyll-a concentration) was calibrated against field observations. Growth rates estimated from the model show positive correlation with observed abundance from plankton net data suggesting close coupling between individual growth and population abundance. This observation was used to directly estimate potential abundance from the model-derived growth. Using satellite data, the model simulate the dominant foraminifer species with a 70.5% efficiency when compared to a data set of 576 field observations worldwide. Using outputs of a biogeochemical model of the global ocean (PISCES) instead of satellite images as forcing variables gives also good results, but with lower efficiency (58.9%). Compared to core tops observations, the model also correctly reproduces the relative worldwide abundance and the diversity of the eight species when using either satellite data either PISCES results. This model allows prediction of the season and water depth at which each species has its maximum abundance potential. This offers promising perspectives for both an improved quantification of paleoceanographic reconstructions and for a better understanding of the foraminiferal role in the marine carbon cycle
Initial State: Theory Status
I present a brief discussion of the different approaches to the study initial
state effects in heavy ion collisions in view of the recent results from Pb+Pb
and p+p collisions at the LHC.Comment: 8 pages, 6 figures. Contribution to the proceedings of the XXII
International Conference on Ultrarelativistic Nucleus-Nucleus Collisions,
QM2011. Annecy, France, 22-28 May 201
Magnetic Structure of Rapidly Rotating FK Comae-Type Coronae
We present a three-dimensional simulation of the corona of an FK Com-type
rapidly rotating G giant using a magnetohydrodynamic model that was originally
developed for the solar corona in order to capture the more realistic,
non-potential coronal structure. We drive the simulation with surface maps for
the radial magnetic field obtained from a stellar dynamo model of the FK Com
system. This enables us to obtain the coronal structure for different field
topologies representing different periods of time. We find that the corona of
such an FK Com-like star, including the large scale coronal loops, is dominated
by a strong toroidal component of the magnetic field. This is a result of part
of the field being dragged by the radial outflow, while the other part remains
attached to the rapidly rotating stellar surface. This tangling of the magnetic
field,in addition to a reduction in the radial flow component, leads to a
flattening of the gas density profile with distance in the inner part of the
corona. The three-dimensional simulation provides a global view of the coronal
structure. Some aspects of the results, such as the toroidal wrapping of the
magnetic field, should also be applicable to coronae on fast rotators in
general, which our study shows can be considerably different from the
well-studied and well-observed solar corona. Studying the global structure of
such coronae should also lead to a better understanding of their related
stellar processes, such as flares and coronal mass ejections, and in
particular, should lead to an improved understanding of mass and angular
momentum loss from such systems.Comment: Accepted to ApJ, 10 pages, 6 figure
The point spread function of electrons in a magnetic field, and the decay of the free neutron
Experiments in nuclear and particle physics often use magnetic fields to
guide charged reaction products to a detector. Due to their gyration in the
guide field, the particles hit the detector within an area that can be
considerably larger than the diameter of the source where the particles are
produced. This blurring of the image of the particle source on the detector
surface is described by a suitable point spread function (PSF), which is
defined as the image of a point source. We derive simple analytical expressions
for such magnetic PSFs, valid for any angular distribution of the emitted
particles that can be developed in Legendre polynomials. We investigate this
rather general problem in the context of neutron beta decay spectrometers and
study the effect of limited detector size on measured neutron decay correlation
parameters. To our surprise, insufficient detector size does not affect much
the accuracy of such measurements, even for rather large radii of gyration.
This finding can considerably simplify the layout of the respective
spectrometers.Comment: 24 pages, 12 figure
Hard diffraction in hadron--hadron interactions and in photoproduction
Hard single diffractive processes are studied within the framework of the
triple--Pomeron approximation. Using a Pomeron structure function motivated by
Regge--theory we obtain parton distribution functions which do not obey
momentum sum rule. Based on Regge-- factorization cross sections for hard
diffraction are calculated. Furthermore, the model is applied to hard
diffractive particle production in photoproduction and in
interactions.Comment: 13 pages, Latex, 13 uuencoded figure
Non-positivity of Groenewold operators
A central feature in the Hilbert space formulation of classical mechanics is
the quantisation of classical Liouville densities, leading to what may be
termed term Groenewold operators. We investigate the spectra of the Groenewold
operators that correspond to Gaussian and to certain uniform Liouville
densities. We show that when the classical coordinate-momentum uncertainty
product falls below Heisenberg's limit, the Groenewold operators in the
Gaussian case develop negative eigenvalues and eigenvalues larger than 1.
However, in the uniform case, negative eigenvalues are shown to persist for
arbitrarily large values of the classical uncertainty product.Comment: 9 pages, 1 figures, submitted to Europhysics Letter
Tetraquarks and Pentaquarks in String Models
We consider the production and decay of multiquark systems in the framework
of string models where the hadron structure is determined by valence quarks
together with string junctions. We show that the low mass multiquark resonances
can be very narrow.Comment: 7 pages, 2 figure
- …