31 research outputs found

    A quasi-geostrophic analysis of summertime southern African linear-regime westerly waves

    Get PDF
    Linear-regime westerly waves that propagate across the South African domain are often linked to well-known rainfall producing systems such as tropical temperate troughs and synoptic scale tropical low-pressure systems, and ridging South Atlantic Ocean anticyclones at the surface. It is accepted that the baroclinic waves that propagate across the domain provide the lifting mechanism that causes the required vertical motion for rainfall to occur. This study shows that there exists a jet streak embedded in these waves that is located downstream of the trough axis, to the east of which vertically upward motion is expected to occur. The entrance of the jet streak passes just south of the country, as the waves propagate past the domain. The study further shows that for this class of waves, the vertical motion that causes rainfall to occur is induced by the thermally direct transverse ageostrophic circulation that is located at this jet entrance. This is instead of the conventional upper air divergence that is located at the infection point east of the trough axis. Using a method of decomposing the Q-vector into its transverse (Qn) and shear (Qs) components, the divergence felds of which are used to decompose the vertical motion into the corresponding components, i.e 휔n and 휔s, respectively; it was shown that the vertical motion over South Africa is explained more by the former than the latter. Therefore, the uplift over the country and that located at the infection point east of the trough are dynamically distinct processes. Taking the limitations of the quasi-geostrophic framework into consideration, the study concludes that during the passage of linear-regime waves vertical motion that might lead to rainfall is caused by the circulation at the jet entrance and not the divergence in the baroclinic wav

    Evaluating South African Weather Service information on Idai tropical cyclone and KwaZulu-Natal flood events

    Get PDF
    Severe weather events associated with strong winds and flooding can cause fatalities, injuries and damage to property. Detailed and accurate weather forecasts that are issued and communicated timeously, and actioned upon, can reduce the impact of these events. The responsibility to provide such forecasts usually lies with government departments or state-owned entities; in South Africa that responsibility lies with the South African Weather Service (SAWS). SAWS is also a regional specialised meteorological centre and therefore provides weather information to meteorological services within the Southern African Development Community (SADC). We evaluated SAWS weather information using near real-time observations and models on the nowcasting to short-range forecasting timescales during two extreme events. These are the Idai tropical cyclone in March 2019 which impacted Mozambique, Zimbabwe and Malawi resulting in over 1000 deaths, and the floods over the KwaZulu-Natal (KZN) province in April 2019 that caused over 70 deaths. Our results show that weather models gave an indication of these systems in advance, with warnings issued at least 2 days in advance in the case of Idai and 1 day in advance for the KZN floods. Nowcasting systems were also in place for detailed warnings to be provided as events progressed. Shortcomings in model simulations were shown, in particular on locating the KZN flood event properly and over/-underestimation of the event. The impacts experienced during the two events indicate that more needs to be done to increase weather awareness, and build disaster risk management systems, including disaster preparedness and risk reduction.Significance: This paper is relevant for all South Africans and the SADC region at large because it provides information on: the weather forecasting processes followed at the South African Weather Service, available early warning products in South Africa and for the SADC region made possible through the public purse, the performance of nowcasting and modelling systems in the case of predicting two extreme weather events that had adverse impacts on southern African society, and the dissemination of warnings of future extreme weather events

    Sensitivity of simulations of Zambian heavy rainfall events to the atmospheric boundary layer schemes

    Get PDF
    Weather forecasting relies on the use of Numerical Weather Prediction (NWP) models, whose resolution is informed by the available computational resources. The models resolve large scale processes, while subgrid processes are parametrized. One of the processes that is parametrized is turbulence which is represented in Planetary Boundary Layer (PBL) schemes. In this study, we evaluate the sensitivity of heavy rainfall events over Zambia to four different PBL schemes in the Weather Research and Forecasting (WRF) model using a parent domain with a 9 km grid length and a 3 km grid spacing child domain. The four PBL schemes are the Yonsei University (YSU), the nonlocal first-order medium-range forecasting (MRF), the University ofWashington (UW) and the Mellor–Yamada–Nakanishi–Niino (MYNN) schemes. Simulations are made for three case studies of extreme rainfall on 17 December 2016, 21 January 2017 and 17 April 2019. Use of the YSU produced the highest rainfall peaks across all three cases, however it produces performance statistics similar to UW that are higher than the two other schemes. These statistics are not maintained when adjusted for random hits indicating that the extra events are mainly random rather than being skilfully placed. UW simulated the lowest PBL height, while MRF produced the highest PBL height, but this is not matched by the temperature simulation. The YSU and MYNN PBL heights were intermediate at the time of the peak, however MYNN is associated with a slower decay, and higher PBL heights at night. WRF underestimates the maximum temperature during all the cases and for all PBL schemes, with a larger bias in the MYNN scheme. We support further use of the YSU scheme, which is the scheme selected for the tropical suite in WRF. The different simulations were in some respects more similar to one another than to the available observations. Satellite rainfall estimates and the ERA5 reanalysis showed different rainfall distributions, which indicate a need for more ground observations to assist with studies like this one

    Evaluating South African weather service information on Idai tropical cyclone and KwaZulu- Natal flood events

    Get PDF
    Severe weather events associated with strong winds and flooding can cause fatalities, injuries and damage to property. Detailed and accurate weather forecasts that are issued and communicated timeously, and actioned upon, can reduce the impact of these events. The responsibility to provide such forecasts usually lies with government departments or state-owned entities; in South Africa that responsibility lies with the South African Weather Service (SAWS). SAWS is also a regional specialised meteorological centre and therefore provides weather information to meteorological services within the Southern African Development Community (SADC). We evaluated SAWS weather information using near real-time observations and models on the nowcasting to short-range forecasting timescales during two extreme events. These are the Idai tropical cyclone in March 2019 which impacted Mozambique, Zimbabwe and Malawi resulting in over 1000 deaths, and the floods over the KwaZulu-Natal (KZN) province in April 2019 that caused over 70 deaths. Our results show that weather models gave an indication of these systems in advance, with warnings issued at least 2 days in advance in the case of Idai and 1 day in advance for the KZN floods. Nowcasting systems were also in place for detailed warnings to be provided as events progressed. Shortcomings in model simulations were shown, in particular on locating the KZN flood event properly and over/underestimation of the event. The impacts experienced during the two events indicate that more needs to be done to increase weather awareness, and build disaster risk management systems, including disaster preparedness and risk reduction. Significance: This paper is relevant for all South Africans and the SADC region at large because it provides information on: • the weather forecasting processes followed at the South African Weather Service, • available early warning products in South Africa and for the SADC region made possible through the public purse, • the performance of nowcasting and modelling systems in the case of predicting two extreme weather events that had adverse impacts on southern African society, and • the dissemination of warnings of future extreme weather events.The Climate Research for Development (CR4D) Postdoctoral Fellowship CR4D-19-11 implemented by the African Academy of Sciences (AAS) in partnership with the United Kingdom’s Department for International Development (DfID) Weather and Climate Information Services for Africa (WISER) programme and the African Climate Policy Center (ACPC) of the United Nations Economic Commission for Africa (UNECA).http://www.sajs.co.zaam2022Geography, Geoinformatics and Meteorolog

    Regional projections of extreme apparent temperature days in Africa and the related potential risk to human health

    Get PDF
    Regional climate modelling was used to produce high resolution climate projections for Africa, under a “business as usual scenario”, that were translated into potential health impacts utilizing a heat index that relates apparent temperature to health impacts. The continent is projected to see increases in the number of days when health may be adversely affected by increasing maximum apparent temperatures (AT) due to climate change. Additionally, climate projections indicate that the increases in AT results in a moving of days from the less severe to the more severe Symptom Bands. The analysis of the rate of increasing temperatures assisted in identifying areas, such as the East African highlands, where health may be at increasing risk due to both large increases in the absolute number of hot days, and due to the high rate of increase. The projections described here can be used by health stakeholders in Africa to assist in the development of appropriate public health interventions to mitigate the potential health impacts from climate change.A Council for Scientific and Industrial Research (CSIR) Parliamentary Grant.http://www.mdpi.com/journal/ijerpham201

    Cut-off lows over South Africa : a review

    Get PDF
    DATA AVAILABILITY STATEMENT : The ECMWF ERA5 reanalysis data can be obtained online via a web portal (https://climate.copernicus.eu/, accessed on 15 January 2023).Every year, cut-off low (COL) pressure systems produce severe weather conditions and heavy rainfall, often leading to flooding, devastation and disruption of socio-economic activities in South Africa. COLs are defined as cold-cored synoptic-scale mid-tropospheric low-pressure systems which occur in the mid-latitudes and cause persistent heavy rainfall. As they occur throughout the year, these weather systems are important rainfall producing systems that are also associated with extreme cold conditions and snowfalls. An in-depth review of COLs is critical due to their high impacts which affect some parts of the country regularly, affecting lives and livelihoods. Here, we provide a comprehensive review of the literature on COLs over the South African domain, whilst also comparing them with their Southern Hemisphere counterparts occurring in South America and Australia. We focus on the occurrence, development, propagation, dynamical processes and impacts of COLs on society and the environment. We also seek to understand stratospheric–tropospheric exchanges resulting from tropopause folding during the occurrence of COLs. Sometimes, COLs may extend to the surface, creating conditions conducive to extreme rainfall and high floods over South Africa, especially when impinged on the coastal escarpment. The slow propagation of COLs appears to be largely modulated by a quasi-stationary high-pressure system downstream acting as a blocking system. We also reviewed two severe COL events that occurred over the south and east coasts and found that in both cases, interactions of the low-level flow with the escarpment enhanced lifting and deep convection. It was also determined from the literature that several numerical weather prediction models struggle with placement and amounts of rainfall associated with COLs, both near the coast and on the interior plateau. Our study provides the single most comprehensive treatise that deals with COL characteristics affecting the South African domain.FUNDING : This research was funded by theWater Research Commission Project, Project Account PJ87.https://www.mdpi.com/journal/climateam2024Geography, Geoinformatics and MeteorologySDG-13:Climate actio

    Rainfall simulations of high-impact weather in South Africa with the conformal cubic atmospheric model (CCAM)

    Get PDF
    Warnings of severe weather with a lead time longer that two hours require the use of skillful numerical weather prediction (NWP) models. In this study, we test the performance of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Conformal Cubic Atmospheric Model (CCAM) in simulating six high-impact weather events, with a focus on rainfall predictions in South Africa. The selected events are tropical cyclone Dineo (16 February 2017), the Cape storm (7 June 2017), the 2017 Kwa-Zulu Natal (KZN) floods (10 October 2017), the 2019 KZN floods (22 April 2019), the 2019 KZN tornadoes (12 November 2019) and the 2020 Johannesburg floods (5 October 2020). Three configurations of CCAM were compared: a 9 km grid length (MN9km) over southern Africa nudged within the Global Forecast System (GFS) simulations, and a 3 km grid length over South Africa (MN3km) nudged within the 9 km CCAM simulations. The last configuration is CCAM running with a grid length of 3 km over South Africa, which is nudged within the GFS (SN3km). The GFS is available with a grid length of 0.25 , and therefore, the configurations allow us to test if there is benefit in the intermediate nudging at 9 km as well as the effects of resolution on rainfall simulations. The South AfricanWeather Service (SAWS) station rainfall dataset is used for verification purposes. All three configurations of CCAM are generally able to capture the spatial pattern of rainfall associated with each of the events. However, the maximum rainfall associated with two of the heaviest rainfall events is underestimated by CCAM with more than 100 mm. CCAM simulations also have some shortcomings with capturing the location of heavy rainfall inland and along the northeast coast of the country. Similar shortcomings were found with other NWP models used in southern Africa for operational forecasting purposes by previous studies. CCAM generally simulates a larger rainfall area than observed, resulting in more stations reporting rainfall. Regarding the different configurations, they are more similar to one another than observations, however, with some suggestion that MN3km outperforms other configurations, in particular with capturing the most extreme events. The performance of CCAM in the convective scales is encouraging, and further studies will be conducted to identify areas of possible improvement.The AIMS NEI Women in Climate Change Science (WiCCS) fellowship and the Water Research Commission.https://www.mdpi.com/journal/atmospheream2023Geography, Geoinformatics and Meteorolog
    corecore