1,035 research outputs found

    Xeroderma pigmentosum complementation group G associated with cockayne syndrome

    Get PDF
    Xeroderma pigmentosum (XP) and Cockayne syndrome (CS) are two rare inherited disorders with a clinical and cellular hypersensitivity to the UV component of the sunlight spectrum. Although the two traits are generally considered as clinically and genetically distinct entities, on the biochemical level a defect in the nucleotide excision-repair (NER) pathway is involved in both. Classical CS patients are primarily deficient in the preferential repair of DNA damage in actively transcribed genes, whereas in most XP patients the genetic defect affects both "preferential" and "overall" NER modalities. Here we report a genetic study of two unrelated, severely affected patients with the clinical characteristics of CS but with a biochemical defect typical of XP. By complementation analysis, using somatic cell fusion and nuclear microinjection of cloned repair genes, we assign these two patients to XP complementation group G, which previously was not associated with CS. This observation extends the earlier identification of two patients with a rare combined XP/CS phenotype within XP complementation groups B and D, respectively. It indicates that some mutations in at least three of the seven genes known to be involved in XP also can result in a picture of partial or even full-blown CS. We conclude that the syndromes XP and CS are biochemically closely related and may be part of a broader clinical disease spectrum. We suggest, as a possible molecular mechanism underlying this relation, that the XPGC repair gene has an additional vital function, as shown for some other NER genes.</p

    Xeroderma pigmentosum complementation group G associated with cockayne syndrome

    Get PDF
    Xeroderma pigmentosum (XP) and Cockayne syndrome (CS) are two rare inherited disorders with a clinical and cellular hypersensitivity to the UV component of the sunlight spectrum. Although the two traits are generally considered as clinically and genetically distinct entities, on the biochemical level a defect in the nucleotide excision-repair (NER) pathway is involved in both. Classical CS patients are primarily deficient in the preferential repair of DNA damage in actively transcribed genes, whereas in most XP patients the genetic defect affects both "preferential" and "overall" NER modalities. Here we report a genetic study of two unrelated, severely affected patients with the clinical characteristics of CS but with a biochemical defect typical of XP. By complementation analysis, using somatic cell fusion and nuclear microinjection of cloned repair genes, we assign these two patients to XP complementation group G, which previously was not associated with CS. This observation extends the earlier identification of two patients with a rare combined XP/CS phenotype within XP complementation groups B and D, respectively. It indicates that some mutations in at least three of the seven genes known to be involved in XP also can result in a picture of partial or even full-blown CS. We conclude that the syndromes XP and CS are biochemically closely related and may be part of a broader clinical disease spectrum. We suggest, as a possible molecular mechanism underlying this relation, that the XPGC repair gene has an additional vital function, as shown for some other NER genes.</p

    Unscheduled DNA synthesis in xeroderma pigmentosum cells after microinjection of yeast photoreactivating enzyme.

    Get PDF
    Photoreactivating enzyme (PRE) from yeast causes a light-dependent reduction of UV-induced unscheduled DNA synthesis (UDS) when injected into the cytoplasm of repair-proficieint human fibroblasts (Zwetsloot et al., 1985). This result indicates that the exogenous PRE monomerizers UV-induced dimers in these cells competing with the endogenous excision repair. In this paper we present the results of the injection of yeast PRE on (residual) UDS in fibroblasts from different excision-deficient XP-strains representing complementation groups A, C, D, E, F, H and I (all displaying more than 10% of the UDS of wild-type

    Assessing recovery after cold challenge and thumb involvement can help to rule out systemic sclerosis in patients presenting with Raynaud?s phenomenon

    Get PDF
    Objective: Our aim was to study whether recovery from a Raynaud?s attack and involvement of the thumb are differentiators for systemic sclerosis (SSc) in patients with Raynaud?s phenomenon (RP). Method: A stepwise cooling and recovery procedure was performed, provoking an RP attack, in patients with primary Raynaud?s phenomenon (PRP, n =?68) and SSc (n?=?18). During the procedure, the perfusion of all five fingers during cooling and recovery was assessed by photoelectric plethysmography. Results: In SSc patients, perfusion after 10?min in one or more fingers was more frequently not restored than in PRP patients (p?=?0.001), with a negative predictive value of 98%. The thumb was more frequently involved in SSc patients (p?=?0.036), with a negative predictive value of 95%. Positive predictive values were low. Conclusions: In patients with RP, when there is restoration of perfusion in all fingers after 10?min or when the thumb is spared, the presence of an underlying SSc is very unlikely. Although these results need to be validated in a clinical setting in a larger prospective study, these signs can help physicians to select additional testing for SSc in RP patients

    Pulmonary involvement in primary Sjogren's syndrome, as measured by the ESSDAI

    Get PDF
    Objective: Systemic features influence disease prognosis and choice of treatment in primary Sjogren's syndrome (pSS). Our aim was to investigate the prevalence of pulmonary involvement in pSS patients and to classify patients according to the pulmonary domain of the EULAR Sjogren's Syndrome Disease Activity Index (ESSDAI). Methods: This retrospective cohort study included consecutive pSS patients, fulfilling American-European Consensus Group/American College of Rheumatology classification criteria, who visited the Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, in 2015. Data on pulmonary complaints and pulmonary tests were obtained from electronic patient records. Pulmonary involvement was recorded if therapy was needed or follow-up was recommended, and when it was possibly or assumed to be related to pSS instead of coincidental factors. Results: Of the 262 included pSS patients, 88 (34%) had pulmonary complaints, mostly cough or dyspnoea on exertion. Pulmonary diagnostics were performed in 225 patients (86%). Pulmonary involvement was present and assumed to be related to pSS in 25 patients (10%) and possibly related to pSS in 14 (5%). Interstitial lung disease (ILD, n = 15), especially non-specific interstitial pneumonia (n = 7), was present most commonly. In total, 16 patients (6%) were scored as low (n = 4), moderate (n = 11), or high activity (n = 1) on the ESSDAI pulmonary domain. Conclusion: In this cross-sectional study in daily clinical practice, pulmonary involvement was present in 10-15% of pSS patients, of which ILD was most common. Of all pSS patients, 6% were scored as active on the pulmonary domain of the ESSDAI

    Molecular and functional analysis of the XPBC/ERCC-3 promoter: Transcription activity is dependent on the integrity of an Sp1 binding element.

    Get PDF
    The human XPBC/ERCC-3 gene, which corrects the excision-repair defect in xeroderma pigmentosum group B cells and the UV-sensitive CHO mutant 27-1 cells, appears to be expressed constitutively in various cell types and tissues. We have analysed the structure and functionality of the XPBC/ERCC-3 promoter. Transcription of the XPBC/ERCC-3 gene is initiated from heterogeneous sites, with a major startpoint mapped at position -54 (relative to the translation start codon ATG). The promoter region does not possess classical TATA and CAAT elements, but it is GC-rich and contains three putative Sp1-binding sites. In addition, there are two elements related to the cyclic AMP (cAMP)-response element (CRE) and the 12-O-tetradecanoyl phorbol-13-acetate-response element (TRE) in the 5'-flanking reg

    Cloning, tissue expression, and mapping of a human photolyase homolog with similarity to plant blue-light receptors

    Get PDF
    Enzymatic photoreactivation is a DNA repair mechanism that removes UV- induced pyrimidine dimer lesions by action of a single enzyme, photolyase, and visible light. Its presence has been demonstrated in a wide variety of organisms, ranging from simple prokaryotes to higher eukaryotes. We have isolated a human gene encoding a 66-kDa protein that shows clear overall homology to known bacterial photolyase genes. The human gene product is more similar to plant blue-light receptors within class I ph
    • …
    corecore