4 research outputs found

    Helix engineering: Combining the power of 3DM with AI to disrupt protein engineering

    Get PDF
    Please click Additional Files below to see the full abstract

    Establishing the relationship between familial dysbetalipoproteinemia and genetic variants in the APOE gene

    Get PDF
    Familial Dysbetalipoproteinemia (FD) is the second most common monogenic dyslipidemia and is associated with a very high cardiovascular risk due to cholesterol-enriched remnant lipoproteins. FD is usually caused by a recessively inherited variant in the APOE gene (ε2ε2), but variants with dominant inheritance have also been described. The typical dysbetalipoproteinemia phenotype has a delayed onset and requires a metabolic hit. Therefore, the diagnosis of FD should be made by demonstrating both the genotype and dysbetalipoproteinemia phenotype. Next Generation Sequencing is becoming more widely available and can reveal variants in the APOE gene for which the relation with FD is unknown or uncertain. In this article, two approaches are presented to ascertain the relationship of a new variant in the APOE gene with FD. The comprehensive approach consists of determining the pathogenicity of the variant and its causal relationship with FD by confirming a dysbetalipoproteinemia phenotype, and performing in vitro functional tests and, optionally, in vivo postprandial clearance studies. When this is not feasible, a second, pragmatic approach within reach of clinical practice can be followed for individual patients to make decisions on treatment, follow-up, and family counseling

    Phase I study of combined indomethacin and platinum-based chemotherapy to reduce platinum-induced fatty acids

    No full text
    Purpose: Chemotherapy-resistance remains a major obstacle to effective anti-cancer treatment. We previously showed that platinum analogs cause the release of two fatty acids. These platinum-induced fatty acids (PIFAs) induced complete chemoresistance in mice, whereas co-administration of a COX-1 inhibitor, indomethacin, prevented PIFA release and significantly enhanced chemosensitivity. To assess the safety of combining indomethacin with platinum-based chemotherapy, and to explore its efficacy and associated PIFA levels, a multi-center phase I trial was conducted. Methods: The study was comprised of two arms: oxaliplatin plus capecitabine (CAPOX, arm I) and cisplatin plus gemcitabine, capecitabine or 5FU (arm II) in patients for whom these regimens were indicated as standard care. Indomethacin was escalated from 25 to 75 mg TID, using a standard 3 × 3 design per arm, and was administered orally 8 days around chemo-infusion from cycle two onwards. PIFA levels were measured before and after treatment initiation, with and without indomethacin. Results: Thirteen patients were enrolled, of which ten were evaluable for safety analyses. In arm I, no dose-limiting toxicities were observed, and all indomethacin dose levels were well-tolerated. Partial responses were observed in three patients (30%). Indomethacin lowered plasma levels of 12-S-hydroxy-5,8,10-heptadecatrienoic acid (12-S-HHT), whereas 4,7,10,13-hexadecatetraenoic acid (16:4(n-3)) levels were not affected. Only one patient was included in arm II; renal toxicity led to closure of this cohort. Conclusions: Combined indomethacin and CAPOX treatment is safe and reduces the concentrations of 12-S-HHT, which may be associated with improved chemosensitivity. The recommended phase II dose is 75 mg indomethacin TID given 8 days surrounding standard dosed CAPOX

    Phase I study of combined indomethacin and platinum-based chemotherapy to reduce platinum-induced fatty acids

    No full text
    Purpose: Chemotherapy-resistance remains a major obstacle to effective anti-cancer treatment. We previously showed that platinum analogs cause the release of two fatty acids. These platinum-induced fatty acids (PIFAs) induced complete chemoresistance in mice, whereas co-administration of a COX-1 inhibitor, indomethacin, prevented PIFA release and significantly enhanced chemosensitivity. To assess the safety of combining indomethacin with platinum-based chemotherapy, and to explore its efficacy and associated PIFA levels, a multi-center phase I trial was conducted. Methods: The study was comprised of two arms: oxaliplatin plus capecitabine (CAPOX, arm I) and cisplatin plus gemcitabine, capecitabine or 5FU (arm II) in patients for whom these regimens were indicated as standard care. Indomethacin was escalated from 25 to 75 mg TID, using a standard 3 × 3 design per arm, and was administered orally 8 days around chemo-infusion from cycle two onwards. PIFA levels were measured before and after treatment initiation, with and without indomethacin. Results: Thirteen patients were enrolled, of which ten were evaluable for safety analyses. In arm I, no dose-limiting toxicities were observed, and all indomethacin dose levels were well-tolerated. Partial responses were observed in three patients (30%). Indomethacin lowered plasma levels of 12-S-hydroxy-5,8,10-heptadecatrienoic acid (12-S-HHT), whereas 4,7,10,13-hexadecatetraenoic acid (16:4(n-3)) levels were not affected. Only one patient was included in arm II; renal toxicity led to closure of this cohort. Conclusions: Combined indomethacin and CAPOX treatment is safe and reduces the concentrations of 12-S-HHT, which may be associated with improved chemosensitivity. The recommended phase II dose is 75 mg indomethacin TID given 8 days surrounding standard dosed CAPOX
    corecore