7 research outputs found

    Cytochrome P450 3A4, 3A5, and 2C8 expression in breast, prostate, lung, endometrial, and ovarian tumors : relevance for resistance to taxanes

    No full text
    Enzymes of the cytochrome P450 (CYP) subfamily 3A and 2C play a major role in the metabolism of taxane anticancer agents. While their function in hepatic metabolism of taxanes is well established, expression of these enzymes in solid tumors may play a role in the in situ metabolism of drugs as well, potentially affecting the intrinsic taxane susceptibility of these tumors. This article reviews the available literature on intratumoral expression of docetaxel- and paclitaxel-metabolizing enzymes in mammary, prostate, lung, endometrial, and ovarian tumors. Furthermore, the clinical implications of the intratumoral expression of these enzymes are reviewed and the potential of concomitant treatment with protease inhibitors (PIs) as a method to inhibit CYP3A4-mediated metabolism is discussed

    Cytochrome P450 3A4, 3A5, and 2C8 expression in breast, prostate, lung, endometrial, and ovarian tumors : relevance for resistance to taxanes

    No full text
    Enzymes of the cytochrome P450 (CYP) subfamily 3A and 2C play a major role in the metabolism of taxane anticancer agents. While their function in hepatic metabolism of taxanes is well established, expression of these enzymes in solid tumors may play a role in the in situ metabolism of drugs as well, potentially affecting the intrinsic taxane susceptibility of these tumors. This article reviews the available literature on intratumoral expression of docetaxel- and paclitaxel-metabolizing enzymes in mammary, prostate, lung, endometrial, and ovarian tumors. Furthermore, the clinical implications of the intratumoral expression of these enzymes are reviewed and the potential of concomitant treatment with protease inhibitors (PIs) as a method to inhibit CYP3A4-mediated metabolism is discussed

    Cytochrome P450 3A4, 3A5, and 2C8 expression in breast, prostate, lung, endometrial, and ovarian tumors: relevance for resistance to taxanes

    No full text
    Enzymes of the cytochrome P450 (CYP) subfamily 3A and 2C play a major role in the metabolism of taxane anticancer agents. While their function in hepatic metabolism of taxanes is well established, expression of these enzymes in solid tumors may play a role in the in situ metabolism of drugs as well, potentially affecting the intrinsic taxane susceptibility of these tumors. This article reviews the available literature on intratumoral expression of docetaxel- and paclitaxel-metabolizing enzymes in mammary, prostate, lung, endometrial, and ovarian tumors. Furthermore, the clinical implications of the intratumoral expression of these enzymes are reviewed and the potential of concomitant treatment with protease inhibitors (PIs) as a method to inhibit CYP3A4-mediated metabolism is discussed

    Exposure–Response Analysis of Osimertinib in EGFR Mutation Positive Non-Small Cell Lung Cancer Patients in a Real-Life Setting

    No full text
    Background: Osimertinib, an irreversible inhibitor of the epidermal growth factor receptor (EGFR) is an important drug in the treatment of EGFR-mutation positive non-small cell lung cancer (NSCLC). Clinical trials with osimertinib could not demonstrate an exposure-efficacy relationship, while a relationship between exposure and toxicity has been found. In this study, we report the exposure–response relationships of osimertinib in a real-life setting. Methods: A retrospective observational cohort study was performed, including patients receiving 40 - 80 mg osimertinib as ≥ 2 line therapy and from whom pharmacokinetic samples were collected during routine care. Trough plasma concentrations (C min,pred) were estimated and used as a measure of osimertinib exposure. A previously defined exploratory pharmacokinetic threshold of 166 µg/L was taken to explore the exposure-efficacy relationship. Results: A total of 145 patients and 513 osimertinib plasma concentration samples were included. Median progression free survival (PFS) was 13.3 (95% confidence interval (CI):10.3 – 19.1) months and 9.3 (95% CI: 7.2 – 11.1) months for patients with C min,pred < 166 µg/L and C min,pred ≥ 166 µg/L, respectively (p = 0.03). In the multivariate analysis, a C min,pred < 166 µg/L resulted in a non-statistically significant hazard ratio of 1.10 (95% CI: 0.60 – 2.01; p = 77). Presence of a EGFR driver-mutation other than the exon 19 del or L858R mutations, led to a shorter PFS with a hazard ratio of 2.89 (95% CI: 1.18 – 7.08; p = 0.02). No relationship between exposure and toxicity was observed (p = 0.91). Conclusion: In our real-life cohort, no exposure–response relationship was observed for osimertinib in the current dosing scheme. The feasibility of a standard lower fixed dosing of osimertinib in clinical practice should be studied prospectively

    Renal function-based versus standard dosing of pemetrexed: a randomized controlled trial

    Get PDF
    Purpose: Pemetrexed is a chemotherapeutic drug in the treatment of non-small cell lung cancer and mesothelioma. Optimized dosing of pemetrexed based on renal function instead of body surface area (BSA) is hypothesized to reduce pharmacokinetic variability in systemic exposure and could therefore improve treatment outcomes. The aim of this study is to compare optimized dosing to standard BSA-based dosing. Methods: A multicenter randomized (1:1) controlled trial was performed to assess superiority of optimized dosing versus BSA-based dosing in patients who were eligible for pemetrexed-based chemotherapy. The individual exposure to pemetrexed in terms of area under the concentration–time curve (AUC) was determined. The fraction of patients attaining to a predefined typical target AUC (164 mg × h/L ± 25%) was calculated. Results: A total of 81 patients were included. Target attainment was not statistically significant different between both arms (89% vs. 84% (p = 0.505)). The AUC of pemetrexed was similar between the optimized dosing arm (n = 37) and the standard of care arm (n = 44) (155 mg × h/L vs 160 mg × h/L (p = 0.436). Conclusion: We could not show superiority of optimized dosing of pemetrexed in patients with an adequate renal function does not show added value on the attainment of a pharmacokinetic endpoint, safety, nor QoL compared to standard of care dosing. Clinical trial number: Clinicaltrials.go

    Hyperhydration with cisplatin does not influence pemetrexed exposure

    No full text
    Pemetrexed is a cytotoxic drug for first-line treatment of lung cancer. It is often combined with other anticancer drugs such as cisplatin or carboplatin. In clinical practice, hyperhydration regimens are applied to overcome cisplatin-related nephrotoxicity. As pemetrexed is almost completely eliminated from the body by the kidneys, hyperhydration can result in augmented clearance. Furthermore, administration of large quantities of fluid may increase the volume of distribution of pemetrexed. Pharmacokinetics and, thus, efficacy and toxicity may be influenced by hyperhydration. This has not yet been properly studied. We performed a population pharmacokinetic analysis to assess hyperhydration as a covariate for pemetrexed clearance and for volume of distribution A relevant change was defined as >25% increase in clearance or volume of distribution. In our extensive dataset of 133 individuals, we found that hyperhydration did not significantly or relevantly explain variability in pemetrexed clearance (unchanged, P =.196) or volume of distribution (+7% change, P =.002), despite a power of >99% to detect a relevant change. Therefore, dose adjustments of pemetrexed are not required during hyperhydration with cisplatin
    corecore