13 research outputs found

    UNAFLOW project: UNsteady Aerodynamics of FLOating Wind turbines

    Get PDF
    UNAFLOW (UNsteady Aerodynamics for Floating Wind) is a joint EU-IRPWIND founded experiment on wind turbine rotor unsteady aerodynamics. It brings together four different academic contributors: Energy research Centre of the Netherlands (ECN), DTU Wind Energy, University of Stuttgart (USTUTT) and Politecnico di Milano (PoliMi) sharing knowledge both in numerical modelling and in experimental tests design, allowing direct numerical and experimental comparison. The experimental tests carried out for UNAFLOW are of the same type of the ones carried out during the ongoing EU H2020 project LIFES50+ [1], regarding both the unsteady behaviour of the 2d blade section and the entire turbine rotor, although with improved setup and wider test matrix. The project partners are already currently jointly collaborating in the AVATAR project [2], developing and validating numerical models of different accuracy level. The numerical models used in the UNALFOW project range from engineering tool (eg. BEM) to high fidelity CFD methods. Numerical simulations are used both in the design of experiment phase and in the results analysis allowing for an in depth understanding of the experimental findings through advanced modelling approach. The UNAFLOW project, together with a new understanding of the unsteady behaviour of the turbine rotor aerodynamics, will provide also an open database to be shared among the scientific community for future analysis and new models validation

    Increased CCL27-CCR10 expression in allergic contact dermatitis: implications for local skin memory.

    No full text
    Allergic contact dermatitis (ACD) is a T-cell-mediated disease in which expression of a distinct repertoire of chemokines results in the recruitment of effector T cells into the skin. While it is becoming clear which chemokines and receptors determine the development of ACD, the mechanisms involved in the retention of T cells in the skin after resolution of inflammation are still unknown. Unravelling these mechanisms will help us to understand local skin memory as observed in retest reactivity and flare-up reactions. This study was designed to evaluate the role of chemokine-chemokine receptor interactions in local T-cell retention. The results show that expression of the CCR10 targeting ligand CCL27 is not only increased during inflammation, but also remains increased several weeks after clinical responsiveness to patch testing. In parallel with increased CCL27 expression, an increased number of infiltrating cells could still be detected in skin that, clinically, had returned to normal 21 days after patch testing. These persisting cells were characterized as CD4+ cells expressing CCR10, while no CD8+ CCR10+ cells could be detected. The presence of these cells is most likely an allergen-mediated effect, as increased levels of CCL27 and CCR10 could not be detected 21 days after initiating an irritant contact dermatitis reaction. In contrast to CCL27, increased expression of CXCL9, CXCL10, and CXCL11 could only be observed during the clinically inflammatory phase of ACD. In conclusion, local CCL27-mediated retention of CCR10+ CD4+ T cells in sites previously challenged by ACD could be responsible for phenomena such as local skin memory observed in retest reactions and flare-up reactions in which the presence of persisting T cells results in an accelerated inflammatory response upon renewed allergen challenge

    Genomic analysis suggests higher susceptibility of children to air pollution

    No full text
    Differences in biological responses to exposure to hazardous airborne substances between children and adults have been reported, suggesting children to be more susceptible. Aim of this study was to improve our understanding of differences in susceptibility in cancer risk associated with air pollution by comparing genome-wide gene expression profiles in peripheral blood of children and their parents. Gene expression analysis was performed in blood from children and parents living in two different regions in the Czech Republic with different levels of air pollution. Data were analyzed by two different approaches: one method first selected significantly differentially expressed genes and analyzed these gene lists for overrepresented biological processes, whereas the other applied the T-profiler tool to directly perform pathway analyses on the total gene set without preselection of significantly modulated gene expressions. In addition, gene expressions in both children and adults were investigated for associations with micronuclei frequencies. Both analysis approaches returned considerably more genes or gene groups and pathways that significantly differed between children from both regions than between parents. Very little overlap was observed between children and adults. The two most important biological processes or molecular functions significantly modulated in children, but not in adults, are nucleosome and immune response related. Our study suggests differences between children and adults in relation to air pollution exposure at the transcriptome level. The findings underline the necessity of implementing environmental health policy measures specifically for protecting children's health. © The Author 2008. Published by Oxford University Press. All rights reserved
    corecore