110 research outputs found
The mitochondrial genome of Sinentomon erythranum (Arthropoda: Hexapoda: Protura): an example of highly divergent evolution
<p>Abstract</p> <p>Background</p> <p>The phylogenetic position of the Protura, traditionally considered the most basal hexapod group, is disputed because it has many unique morphological characters compared with other hexapods. Although mitochondrial genome information has been used extensively in phylogenetic studies, such information is not available for the Protura. This has impeded phylogenetic studies on this taxon, as well as the evolution of the arthropod mitochondrial genome.</p> <p>Results</p> <p>In this study, the mitochondrial genome of <it>Sinentomon erythranum </it>was sequenced, as the first proturan species to be reported. The genome contains a number of special features that differ from those of other hexapods and arthropods. As a very small arthropod mitochondrial genome, its 14,491 nucleotides encode 37 typical mitochondrial genes. Compared with other metazoan mtDNA, it has the most biased nucleotide composition with T = 52.4%, an extreme and reversed AT-skew of -0.351 and a GC-skew of 0.350. Two tandemly repeated regions occur in the A+T-rich region, and both could form stable stem-loop structures. Eighteen of the 22 tRNAs are greatly reduced in size with truncated secondary structures. The gene order is novel among available arthropod mitochondrial genomes. Rearrangements have involved in not only small tRNA genes, but also PCGs (protein-coding genes) and ribosome RNA genes. A large block of genes has experienced inversion and another nearby block has been reshuffled, which can be explained by the tandem duplication and random loss model. The most remarkable finding is that <it>trnL2(UUR) </it>is not located between <it>cox1 </it>and <it>cox2 </it>as observed in most hexapod and crustacean groups, but is between <it>rrnL </it>and <it>nad1 </it>as in the ancestral arthropod ground pattern. The "<it>cox1</it>-<it>cox2</it>" pattern was further confirmed in three more representative proturan species. The phylogenetic analyses based on the amino acid sequences of 13 mitochondrial PCGs suggest <it>S</it>. <it>erythranum </it>failed to group with other hexapod groups.</p> <p>Conclusions</p> <p>The mitochondrial genome of <it>S. erythranum </it>shows many different features from other hexapod and arthropod mitochondrial genomes. It underwent highly divergent evolution. The "<it>cox1</it>-<it>cox2</it>" pattern probably represents the ancestral state for all proturan mitogenomes, and suggests a long evolutionary history for the Protura.</p
Monophyly of clade III nematodes is not supported by phylogenetic analysis of complete mitochondrial genome sequences
<p>Abstract</p> <p>Background</p> <p>The orders Ascaridida, Oxyurida, and Spirurida represent major components of zooparasitic nematode diversity, including many species of veterinary and medical importance. Phylum-wide nematode phylogenetic hypotheses have mainly been based on nuclear rDNA sequences, but more recently complete mitochondrial (mtDNA) gene sequences have provided another source of molecular information to evaluate relationships. Although there is much agreement between nuclear rDNA and mtDNA phylogenies, relationships among certain major clades are different. In this study we report that mtDNA sequences do not support the monophyly of Ascaridida, Oxyurida and Spirurida (clade III) in contrast to results for nuclear rDNA. Results from mtDNA genomes show promise as an additional independently evolving genome for developing phylogenetic hypotheses for nematodes, although substantially increased taxon sampling is needed for enhanced comparative value with nuclear rDNA. Ultimately, topological incongruence (and congruence) between nuclear rDNA and mtDNA phylogenetic hypotheses will need to be tested relative to additional independent loci that provide appropriate levels of resolution.</p> <p>Results</p> <p>For this comparative phylogenetic study, we determined the complete mitochondrial genome sequences of three nematode species, <it>Cucullanus robustus </it>(13,972 bp) representing Ascaridida, <it>Wellcomia </it><it>siamensis </it>(14,128 bp) representing Oxyurida, and <it>Heliconema longissimum </it>(13,610 bp) representing Spirurida. These new sequences were used along with 33 published nematode mitochondrial genomes to investigate phylogenetic relationships among chromadorean orders. Phylogenetic analyses of both nucleotide and amino acid sequence datasets support the hypothesis that Ascaridida is nested within Rhabditida. The position of Oxyurida within Chromadorea varies among analyses; in most analyses this order is sister to the Ascaridida plus Rhabditida clade, with representative Spirurida forming a distinct clade, however, in one case Oxyurida is sister to Spirurida. Ascaridida, Oxyurida, and Spirurida (the sampled clade III taxa) do not form a monophyletic group based on complete mitochondrial DNA sequences. Tree topology tests revealed that constraining clade III taxa to be monophyletic, given the mtDNA datasets analyzed, was a significantly worse result.</p> <p>Conclusion</p> <p>The phylogenetic hypotheses from comparative analysis of the complete mitochondrial genome data (analysis of nucleotide and amino acid datasets, and nucleotide data excluding 3<sup>rd </sup>positions) indicates that nematodes representing Ascaridida, Oxyurida and Spirurida do not share an exclusive most recent common ancestor, in contrast to published results based on nuclear ribosomal DNA. Overall, mtDNA genome data provides reliable support for nematode relationships that often corroborates findings based on nuclear rDNA. It is anticipated that additional taxonomic sampling will provide a wealth of information on mitochondrial genome evolution and sequence data for developing phylogenetic hypotheses for the phylum Nematoda.</p
Full mitochondrial genome sequences of two endemic Philippine hornbill species (Aves: Bucerotidae) provide evidence for pervasive mitochondrial DNA recombination
<p>Abstract</p> <p>Background</p> <p>Although nowaday it is broadly accepted that mitochondrial DNA (mtDNA) may undergo recombination, the frequency of such recombination remains controversial. Its estimation is not straightforward, as recombination under homoplasmy (i.e., among identical mt genomes) is likely to be overlooked. In species with tandem duplications of large mtDNA fragments the detection of recombination can be facilitated, as it can lead to gene conversion among duplicates. Although the mechanisms for concerted evolution in mtDNA are not fully understood yet, recombination rates have been estimated from "one per speciation event" down to 850 years or even "during every replication cycle".</p> <p>Results</p> <p>Here we present the first complete mt genome of the avian family Bucerotidae, i.e., that of two Philippine hornbills, <it>Aceros waldeni </it>and <it>Penelopides panini</it>. The mt genomes are characterized by a tandemly duplicated region encompassing part of <it>cytochrome b</it>, 3 tRNAs, <it>NADH6</it>, and the control region. The duplicated fragments are identical to each other except for a short section in domain I and for the length of repeat motifs in domain III of the control region. Due to the heteroplasmy with regard to the number of these repeat motifs, there is some size variation in both genomes; with around 21,657 bp (<it>A. waldeni</it>) and 22,737 bp (<it>P. panini</it>), they significantly exceed the hitherto longest known avian mt genomes, that of the albatrosses. We discovered concerted evolution between the duplicated fragments within individuals. The existence of differences between individuals in coding genes as well as in the control region, which are maintained between duplicates, indicates that recombination apparently occurs frequently, i.e., in every generation.</p> <p>Conclusions</p> <p>The homogenised duplicates are interspersed by a short fragment which shows no sign of recombination. We hypothesize that this region corresponds to the so-called Replication Fork Barrier (RFB), which has been described from the chicken mitochondrial genome. As this RFB is supposed to halt replication, it offers a potential mechanistic explanation for frequent recombination in mitochondrial genomes.</p
Mitochondrial genomes and Doubly Uniparental Inheritance: new insights from Musculista senhousia sex-linked mitochondrial DNAs (Bivalvia Mytilidae)
BACKGROUND: Doubly Uniparental Inheritance (DUI) is a fascinating exception to matrilinear inheritance of mitochondrial DNA (mtDNA). Species with DUI are characterized by two distinct mtDNAs that are inherited either through females (F-mtDNA) or through males (M-mtDNA). DUI sex-linked mitochondrial genomes share several unusual features, such as additional protein coding genes and unusual gene duplications/structures, which have been related to the functionality of DUI. Recently, new evidence for DUI was found in the mytilid bivalve Musculista senhousia. This paper describes the complete sex-linked mitochondrial genomes of this species. RESULTS: Our analysis highlights that both M and F mtDNAs share roughly the same gene content and order, but with some remarkable differences. The Musculista sex-linked mtDNAs have differently organized putative control regions (CR), which include repeats and palindromic motifs, thought to provide sites for DNA-binding proteins involved in the transcriptional machinery. Moreover, in male mtDNA, two cox2 genes were found, one (M-cox2b) 123bp longer. CONCLUSIONS: The complete mtDNA genome characterization of DUI bivalves is the first step to unravel the complex genetic signals allowing Doubly Uniparental Inheritance, and the evolutionary implications of such an unusual transmission route in mitochondrial genome evolution in Bivalvia. The observed redundancy of the palindromic motifs in Musculista M-mtDNA may have a role on the process by which sperm mtDNA becomes dominant or exclusive of the male germline of DUI species. Moreover, the duplicated M-COX2b gene may have a different, still unknown, function related to DUI, in accordance to what has been already proposed for other DUI species in which a similar cox2 extension has been hypothesized to be a tag for male mitochondria
Systematics and plastid genome evolution of the cryptically photosynthetic parasitic plant genus Cuscuta (Convolvulaceae)
<p>Abstract</p> <p>Background</p> <p>The genus <it>Cuscuta </it>L. (Convolvulaceae), commonly known as dodders, are epiphytic vines that invade the stems of their host with haustorial feeding structures at the points of contact. Although they lack expanded leaves, some species are noticeably chlorophyllous, especially as seedlings and in maturing fruits. Some species are reported as crop pests of worldwide distribution, whereas others are extremely rare and have local distributions and apparent niche specificity. A strong phylogenetic framework for this large genus is essential to understand the interesting ecological, morphological and molecular phenomena that occur within these parasites in an evolutionary context.</p> <p>Results</p> <p>Here we present a well-supported phylogeny of <it>Cuscuta </it>using sequences of the nuclear ribosomal internal transcribed spacer and plastid <it>rps2</it>, <it>rbcL </it>and <it>matK </it>from representatives across most of the taxonomic diversity of the genus. We use the phylogeny to interpret morphological and plastid genome evolution within the genus. At least three currently recognized taxonomic sections are not monophyletic and subgenus <it>Cuscuta </it>is unequivocally paraphyletic. Plastid genes are extremely variable with regards to evolutionary constraint, with <it>rbcL </it>exhibiting even higher levels of purifying selection in <it>Cuscuta </it>than photosynthetic relatives. Nuclear genome size is highly variable within <it>Cuscuta</it>, particularly within subgenus <it>Grammica</it>, and in some cases may indicate the existence of cryptic species in this large clade of morphologically similar species.</p> <p>Conclusion</p> <p>Some morphological characters traditionally used to define major taxonomic splits within <it>Cuscuta </it>are homoplastic and are of limited use in defining true evolutionary groups. Chloroplast genome evolution seems to have evolved in a punctuated fashion, with episodes of loss involving suites of genes or tRNAs followed by stabilization of gene content in major clades. Nearly all species of <it>Cuscuta </it>retain some photosynthetic ability, most likely for nutrient apportionment to their seeds, while complete loss of photosynthesis and possible loss of the entire chloroplast genome is limited to a single small clade of outcrossing species found primarily in western South America.</p
The enigmatic mitochondrial genome of Rhabdopleura compacta (Pterobranchia) reveals insights into selection of an efficient tRNA system and supports monophyly of Ambulacraria
<p>Abstract</p> <p>Background</p> <p>The Hemichordata comprises solitary-living Enteropneusta and colonial-living Pterobranchia, sharing morphological features with both Chordata and Echinodermata. Despite their key role for understanding deuterostome evolution, hemichordate phylogeny is controversial and only few molecular data are available for phylogenetic analysis. Furthermore, mitochondrial sequences are completely lacking for pterobranchs. Therefore, we determined and analyzed the complete mitochondrial genome of the pterobranch <it>Rhabdopleura compacta </it>to elucidate deuterostome evolution. Thereby, we also gained important insights in mitochondrial tRNA evolution.</p> <p>Results</p> <p>The mitochondrial DNA of <it>Rhabdopleura compacta </it>corresponds in size and gene content to typical mitochondrial genomes of metazoans, but shows the strongest known strand-specific mutational bias in the nucleotide composition among deuterostomes with a very GT-rich main-coding strand. The order of the protein-coding genes in <it>R. compacta </it>is similar to that of the deuterostome ground pattern. However, the protein-coding genes have been highly affected by a strand-specific mutational pressure showing unusual codon frequency and amino acid composition. This composition caused extremely long branches in phylogenetic analyses. The unusual codon frequency points to a selection pressure on the tRNA translation system to codon-anticodon sequences of highest versatility instead of showing adaptations in anticodon sequences to the most frequent codons. Furthermore, an assignment of the codon AGG to Lysine has been detected in the mitochondrial genome of <it>R. compacta</it>, which is otherwise observed only in the mitogenomes of some arthropods. The genomes of these arthropods do not have such a strong strand-specific bias as found in <it>R. compacta </it>but possess an identical mutation in the anticodon sequence of the tRNA<sub>Lys</sub>.</p> <p>Conclusion</p> <p>A strong reversed asymmetrical mutational constraint in the mitochondrial genome of <it>Rhabdopleura compacta </it>may have arisen by an inversion of the replication direction and adaptation to this bias in the protein sequences leading to an enigmatic mitochondrial genome. Although, phylogenetic analyses of protein coding sequences are hampered, features of the tRNA system of <it>R. compacta </it>support the monophyly of Ambulacraria. The identical reassignment of AGG to Lysine in two distinct groups may have occurred by convergent evolution in the anticodon sequence of the tRNA<sub>Lys</sub>.</p
Evidence for a Fourteenth mtDNA-Encoded Protein in the Female-Transmitted mtDNA of Marine Mussels (Bivalvia: Mytilidae)
BACKGROUND: A novel feature for animal mitochondrial genomes has been recently established: i.e., the presence of additional, lineage-specific, mtDNA-encoded proteins with functional significance. This feature has been observed in freshwater mussels with doubly uniparental inheritance of mtDNA (DUI). The latter unique system of mtDNA transmission, which also exists in some marine mussels and marine clams, is characterized by one mt genome inherited from the female parent (F mtDNA) and one mt genome inherited from the male parent (M mtDNA). In freshwater mussels, the novel mtDNA-encoded proteins have been shown to be mt genome-specific (i.e., one novel protein for F genomes and one novel protein for M genomes). It has been hypothesized that these novel, F- and M-specific, mtDNA-encoded proteins (and/or other F- and/or M-specific mtDNA sequences) could be responsible for the different modes of mtDNA transmission in bivalves but this remains to be demonstrated. METHODOLOGY/PRINCIPAL FINDINGS: We investigated all complete (or nearly complete) female- and male-transmitted marine mussel mtDNAs previously sequenced for the presence of ORFs that could have functional importance in these bivalves. Our results confirm the presence of a novel F genome-specific mt ORF, of significant length (>100aa) and located in the control region, that most likely has functional significance in marine mussels. The identification of this ORF in five Mytilus species suggests that it has been maintained in the mytilid lineage (subfamily Mytilinae) for ∼13 million years. Furthermore, this ORF likely has a homologue in the F mt genome of Musculista senhousia, a DUI-containing mytilid species in the subfamily Crenellinae. We present evidence supporting the functionality of this F-specific ORF at the transcriptional, amino acid and nucleotide levels. CONCLUSIONS/SIGNIFICANCE: Our results offer support for the hypothesis that "novel F genome-specific mitochondrial genes" are involved in key biological functions in bivalve species with DUI
- …