2 research outputs found

    Influence of sawtooth twisted tape on thermal enhancement of heat exchanger tube

    No full text
    This article employs sawtooth twisted tapes to generate swirling flow and interrupted flowing disturbance in order to increase the level of heat transfer rate. The influences of the sawtooth twisted tape (S-TT) on enhanced heat transfer rate, friction factor and aerothermal performance index (API) behaviors are analyzed. The sawtooth twisted tapes (S-TTs) possessing constant pitch/twist ratio (y//W) of 3.0 and six sawtooth angles (α) of 20°, 30°, 40°, 50°, 60°, and 70° are assessed. Considering turbulent flow using air as the testing fluid, experiments were investigated at 6,000 < Re < 20,000 under boundary conditions of constant heat flux. According to the experimental findings, sawtooth twisted tape (S-TT) improves heat transfer rate and raises pressure loss with varying rates based on sawtooth angles (α). With the sawtooth twisted tape (S-TT) and 70° sawtooth angles, the optimum API of 1.33 is attained, while Nusselt number and friction factor are 32 and 0.135 at Re = 6,000. The recommended sawtooth twisted tape (S-TT) yields a highest Nusselt number of 78, which is 1.6 times greater than the typical twisted tape (TT) and 1.1 times greater than the plain tube. The combination of the TT and sawtooth patterns can be beneficial in terms of boosting heat transfer rate and API relating coupling of swirling flow and interrupted flowing disruption effects since the sawtooth twisted tape (S-TT) offers superior performance than the TT. Additionally, the heat exchanger tubes fitted with sawtooth twisted tape (S-TT) at sawtooth angles (α) of 20°, 30°, 40°, 50°, 60°, and 70° gain greater Nusselt number than the plain tube up to 158.3%, 162.2%, 166.1%, 171.7%, 179.7% and 186.2%, respectively

    Heat Transfer Intensification in a Heat Exchanger by Means of Twisted Tapes in Rib and Sawtooth Forms

    No full text
    This experimental study aimed to intensify the aerothermal performance index (API) in a round tube heat exchanger employing twisted tapes in rib and sawtooth forms (TTRSs) as swirl/vortex flow generators. The TTRSs have a constant twist ratio of 3.0, a constant rib pitch ratio (p/e) of 1.0, and six different sawtooth angles (α = 20°, 30°, 40°, 50°, 60°, and 70°). Experiments were carried out in an open flow using air as the working fluid for Reynolds numbers between 6000 and 20,000 in the current study, which was conducted in a heated tube under conditions of uniform wall heat flux. A typical twisted tape (TT) was also tested for comparison. The experimental results suggest that TTRSs yield Nusselt numbers ranging from 1.42 to 2.10 times of those of a plain tube. TTRSs with larger sawtooth angles (α) offer superior heat transfer. The TTRSs with α = 20°, 30°, 40°, 50°, 60°, and 70° respectively, enhance average Nusselt numbers by 158%, 162%, 166%, 172%, 180%, and 187% with average friction factors of 3.51, 3.55, 3.60, 3.67, 3.75 and 3.82 times higher than a plain tube. Additionally, TTRSs with sawtooth angles (α) of 20°, 30°, 40°, 50°, 60°, and 70° offer APIs in the ranges of 0.99 to 1.19, 1.01 to 1.21, 1.03 to 1.26, 1.05 to 1.31, 1.07 to 1.42, and 1.09 to 1.48, respectively, which are higher than those of the typical twisted tape (TT) by around 5%, 7%, 11%, 16%, 25%, and 31%, respectively. This demonstrates that twisted tapes in rib and sawtooth form (TTRSs), with appropriate geometries, give a promising trade-off between enhanced heat transfer and an increased friction loss penalty
    corecore