2 research outputs found

    Prevalence and diversity of blood parasites (Plasmodium, Leucocytozoon and Trypanosoma) in backyard chickens (Gallus gallus domesticus) raised in Southern Thailand

    No full text
    Avian malaria and leucocytozoonosis can cause fatal diseases, whereas avian trypanosomiasis is reported to be harmless in chickens. Backyard chickens can be infected by several pathogens, including blood parasites, that may shed to industrial poultry production, with a consequently higher economic impact. This study aimed to investigate the presence of several blood parasites (Plasmodium, Leucocytozoon and Trypanosoma) in backyard chickens raised in Southern Thailand, using PCR-based detection and microscopic methods. From June 2021 to June 2022, 57 backyard chickens were sampled. Fresh thin blood smears were prepared from 11 individuals, and buffy coat smears were prepared from 55 of them. Both thin blood smears and buffy coat smears were used for microscopic analysis. Two nested PCR protocols that amplify a fragment of cytochrome b (cytb) and small subunit rRNA (SSU rRNA) genes were used to identify Haemosporida and Trypanosoma parasites, respectively. The number of positive samples was higher with the application of nested PCR than when buffy coat smears were used. Three new Plasmodium lineages (GALLUS47-49) and thirteen Leucocytozoon lineages (GALLUS50-62) were found. Trophozoites, meronts and gametocytes of Plasmodium gallinaceum (GALLUS01) were present in one thin blood smear. All thin blood smears revealed Leucocytozoon infections, but only three samples were a single infection. These three samples revealed the presence of fusiform host cell–parasite complexes, of which the morphological features resembled those of Leucocytozoon macleani (possible synonym is Leucocytozoon sabrazesi), while the cytb showed that this parasite is closely related to the lineage GALLUS06-07, described as Leucocytozoon schouteni. The Trypanosoma prevalence was 33.33%; it was present in only one of the thin blood smears, and it resembles Trypanosoma calmettei. This study showed the prevalence of a high diversity of Plasmodium (64.91%) and Leucocytozoon (89.47%) in Thai chickens. Both nested-PCR and buffy coat smear can be used as the diagnostic tool for the testing of Plasmodium, Leucocytozoon and Trypanosoma for parasitic control in backyard chickens and poultry farms. The information on the parasite species that can be found in chickens raised in Southern Thailand was also considered as the baseline information for further study

    Leptospiral Leucine-Rich Repeat Protein-Based Lateral Flow for Assessment of Canine Leptospiral Immunoglobulin G

    No full text
    The recombinant, modified leucine-rich repeat protein rhKU_Sej_LRR_2271 has been suggested as a candidate for leptospiral vaccine development since it was predicted to be a transmembrane protein containing leucine-rich repeat motifs and immunogenic epitopes. The immunogenic epitopes showed binding affinities with lower IC50 values than peptides of known antigenic proteins, e.g., LipL32. Moreover, this protein was immunoreactive with hyperimmune sera against several serovars. In this study, we aimed to develop a lateral flow strip test using the rhKU_Sej_LRR_2271 protein for the detection of anti-leptospiral IgG in dogs. The lateral flow assay was performed with 184 dog plasma samples and evaluated with a culture method, 16S ribosomal RNA gene (rss) analysis real-time PCR, and LipL32 ELISA. The culture method failed to detect leptospires in the dog blood samples. Six of nine symptomatic dogs gave positive results with the real-time PCR assay. The lateral flow assay and LipL32 ELISA gave positive results with 59 and 50 dogs, respectively. The sensitivity, specificity, and accuracy of the rhKU_Sej_LRR_2271 lateral flow strip test were 70.00, 82.09, and 78.80%, respectively, when compared with LipL32 ELISA. There was a significant association between the LipL32 ELISA and the rhKU_Sej_LRR_2271 lateral flow assay. The rhKU_Sej_LRR_2271 lateral flow strip test has therefore demonstrated a good potential to detect anti-leptospiral IgG in dogs
    corecore