5,217 research outputs found

    Effect of photoperiod on body weight gain, and daily energy intake and energy expenditure in Japanese quail (Coturnix c. Japonica)

    Get PDF
    Effect of photoperiod and food duration on body weight gain, energy intake, energy expenditure, and sexual development were investigated in two strains of Japanese quail (Coturnix c. japonica), bred for meat (broilers) or egg production (layers), from 7 to 71 days of age. In a first experiment chicks were subjected to 18L:6D, 15L:9D, 12L:12D, 9L:15D, or 6L:18D, with ad lib food during the light period. In a second experiment birds were exposed to a long photoperiod (18L:6D or 15L:9D) with ad lib food during part of the light period (first 6 or 9 h, respectively). Longer photoperiods were associated with larger weight gains. In 18L:6D broilers total body weight gain was 262 g compared to 213 g in 6L:18D broilers. In layers, corresponding values were 182 and 131 g. This effect of photoperiod on weight gain was primarily due to the effect of photoperiod on food availability. The photoperiod below which detrimental effects on weight gain occurred was 9L:15D for both strains. Chicks subjected to 9L:15D or 6L:18D exploited crop filling to enhance energy intake. They also decreased nocturnal metabolic rates to a greater extent compared to levels during the light phase than chicks subjected to light periods of 12 h or more. Sexual maturation was stimulated by photoperiod. At the age of 71 days, eight out of nine females subjected to 18L:6D were producing eggs, but none of the 6L:18D females. It is concluded that changes in feeding behavior and energy expenditure shown under short photoperiods are part of a strategy that allow chicks to gain weight continuously.

    Propagation and organization in lattice random media

    Full text link
    We show that a signal can propagate in a particular direction through a model random medium regardless of the precise state of the medium. As a prototype, we consider a point particle moving on a one-dimensional lattice whose sites are occupied by scatterers with the following properties: (i) the state of each site is defined by its spin (up or down); (ii) the particle arriving at a site is scattered forward (backward) if the spin is up (down); (iii) the state of the site is modified by the passage of the particle, i.e. the spin of the site where a scattering has taken place, flips (\uparrow \Leftrightarrow \downarrow ). We consider one dimensional and triangular lattices, for which we give a microscopic description of the dynamics, prove the propagation of a particle through the scatterers, and compute analytically its statistical properties. In particular we prove that, in one dimension, the average propagation velocity is =1/(32q) = 1/(3-2q), with qq the probability that a site has a spin \uparrow, and, in the triangular lattice, the average propagation velocity is independent of the scatterers distribution: =1/8 = 1/8. In both cases, the origin of the propagation is a blocking mechanism, restricting the motion of the particle in the direction opposite to the ultimate propagation direction, and there is a specific re-organization of the spins after the passage of the particle. A detailed mathematical analysis of this phenomenon is, to the best of our knowledge, presented here for the first time.Comment: 30 pages, 15 separate figures (in PostScript); submitted to J. Stat. Phy

    Observations on a viscoseal in a transparent housing - The prevention of leakage and breakdown

    Get PDF
    Leakage and breakdown prevention in transparently housed viscoshaft seal with visual observatio

    Statistics of precursors to fingering processes

    Full text link
    We present an analysis of the statistical properties of hydrodynamic field fluctuations which reveal the existence of precursors to fingering processes. These precursors are found to exhibit power law distributions, and these power laws are shown to follow from spatial qq-Gaussian structures which are solutions to the generalized non-linear diffusion equation.Comment: 7 pages incl. 5 figs; tp appear in Europhysics Letter

    Goal Directed Approach to Autonomous Motion Planning for Unmanned Vehicles

    Get PDF
    Advancement in the field of autonomous motion planning has enabled the realisation of fully autonomous unmanned vehicles. Sampling based motion planning algorithms have shown promising prospects in generating fast, effective and practical solutions to different motion planning problems in unmanned vehicles for both civilian and military applications. But the goal bias introduced by heuristic probability shaping to generate faster solution may result in local collisions. A simple, real-time method is proposed for goal direction by preferential selection of a state from a sampled pair of random state, based on the distance to goal. This limits the graph motions resulting in smaller data structure, making the algorithm optimised for time and solution length. This would enable unmanned vehicles to take shorter paths and avoid collisions in obstacle rich environment. The approach is analysed on a sampling based algorithm, rapidly-exploring random tree (RRT) which computes motion plans under constrain of time. This paper proposes an algorithm called ’goal directed RRT (GRRT)’ building on the basic RRT algorithm, providing an alternative to probabilistic goal biasing, thereby avoiding local collision. The approach is evaluated by benchmarking it with RRT algorithm for kinematic car, dynamic car and a quadrotor and the results show improvements in length of the motion plans and the time of computing

    Design heuristic for parallel many server systems under FCFS-ALIS

    Get PDF
    We study a parallel service queueing system with servers of types s1,,sJs_1,\ldots,s_J, customers of types c1,,cIc_1,\ldots,c_I, bipartite compatibility graph G\mathcal{G}, where arc (ci,sj)(c_i, s_j) indicates that server type sjs_j can serve customer type cic_i, and service policy of first come first served FCFS, assign longest idle server ALIS. For a general renewal stream of arriving customers and general service time distributions, the behavior of such systems is very complicated, in particular the calculation of matching rates rci,sjr_{c_i,s_j}, the fraction of services of customers of type cic_i by servers of type sjs_j, is intractable. We suggest through a heuristic argument that if the number of servers becomes large, the matching rates are well approximated by matching rates calculated from the tractable FCFS bipartite infinite matching model. We present simulation evidence to support this heuristic argument, and show how this can be used to design systems for given performance requirements

    Dynamic correlations in stochastic rotation dynamics

    Full text link
    The dynamic structure factor, vorticity and entropy density dynamic correlation functions are measured for Stochastic Rotation Dynamics (SRD), a particle based algorithm for fluctuating fluids. This allows us to obtain unbiased values for the longitudinal transport coefficients such as thermal diffusivity and bulk viscosity. The results are in good agreement with earlier numerical and theoretical results, and it is shown for the first time that the bulk viscosity is indeed zero for this algorithm. In addition, corrections to the self-diffusion coefficient and shear viscosity arising from the breakdown of the molecular chaos approximation at small mean free paths are analyzed. In addition to deriving the form of the leading correlation corrections to these transport coefficients, the probabilities that two and three particles remain collision partners for consecutive time steps are derived analytically in the limit of small mean free path. The results of this paper verify that we have an excellent understanding of the SRD algorithm at the kinetic level and that analytic expressions for the transport coefficients derived elsewhere do indeed provide a very accurate description of the SRD fluid.Comment: 33 pages including 16 figure

    Cumulative Exposure Assessment of Triazole Pesticides

    Get PDF
    In the EFSA opinion on identification of new approaches to assess cumulative and synergistic risks from pesticides to human health a tiered approach for cumulative risk assessment has been proposed. The first tier is a deterministic approach using average and large portion consumption statistics. The higher tiers include probabilistic exposure assessment and Benchmark Dose (BMD) modeling. The aim of this study is to demonstrate the feasibility and applicability of a higher tier assessment of cumulative exposure using probabilistic modeling in combination with the relative potency factor (RPF) approach. The RPFs are used to weigh the toxicity of each pesticide relative to the toxicity of a chosen index compound (pesticide). In this report the authors address both the short-term and long-term cumulative exposure to triazoles using different statistical model
    corecore