141 research outputs found
Postnatal growth rate varies with latitude in range-expanding geese: The role of plasticity and day length
1. The postnatal growth period is a crucial life stage, with potential lifelong effects on an animal's fitness. How fast animals grow depends on their life‐history strategy and rearing environment, and interspecific comparisons generally show higher growth rates at higher latitudes. However, to elucidate the mechanisms behind this gradient in growth rate, intraspecific comparisons are needed. 2. Recently, barnacle geese expanded their Arctic breeding range from the Russian Barents Sea coast southwards, and now also breed along the Baltic and North Sea coasts. Baltic breeders shortened their migration, while barnacle geese breeding along the North Sea stopped migrating entirely. 3. We collected cross‐sectional data on gosling tarsus length, head length and body mass, and constructed population‐specific growth curves to compare growth rates among three populations (Barents Sea, Baltic Sea and North Sea) spanning 17° in latitude. 4. Growth rate was faster at higher latitudes, and the gradient resembled the latitudinal gradient previously observed in an interspecific comparison of precocial species. Differences in day length among the three breeding regions could largely explain the observed differences in growth rate. In the Baltic, and especially in the Arctic population, growth rate was slower later in the season, most likely because of the stronger seasonal decline in food quality. 5. Our results suggest that differences in postnatal growth rate between the Arctic and temperate populations are mainly a plastic response to local environmental conditions. This plasticity can increase the individuals' ability to cope with annual variation in local conditions, but can also increase the potential to re‐distribute and adapt to new breeding environments
Year-round activity levels reveal diurnal foraging constraints in the annual cycle of migratory and non-migratory barnacle geese
Performing migratory journeys comes with energetic costs, which have to be compensated within the annual cycle. An assessment of how and when such compensation occurs is ideally done by comparing full annual cycles of migratory and non-migratory individuals of the same species, which is rarely achieved. We studied free-living migratory and resident barnacle geese belonging to the same flyway (metapopulation), and investigated when differences in foraging activity occur, and when foraging extends beyond available daylight, indicating a diurnal foraging constraint in these usually diurnal animals. We compared foraging activity of migratory (N = 94) and resident (N = 30) geese throughout the annual cycle using GPS-transmitters and 3D-accelerometers, and corroborated this with data on seasonal variation in body condition. Migratory geese were more active than residents during most of the year, amounting to a difference of over 370 h over an entire annual cycle. Activity differences were largest during the periods that comprised preparation for spring and autumn migration. Lengthening days during spring facilitated increased activity, which coincided with an increase in body condition. Both migratory and resident geese were active at night during winter, but migratory geese were also active at night before autumn migration, resulting in a period of night-time activity that was 6 weeks longer than in resident geese. Our results indicate that, at least in geese, seasonal migration requires longer daily activity not only during migration but throughout most of the annual cycle, with migrants being more frequently forced to extend foraging activity into the night
Trends in Outcomes for Neonates Born Very Preterm and Very Low Birth Weight in 11 High-Income Countries
Objective
To evaluate outcome trends of neonates born very preterm in 11 high-income countries participating in the International Network for Evaluating Outcomes of neonates. Study design In a retrospective cohort study, we included 154 233 neonates admitted to 529 neonatal units between January 1, 2007, and December 31, 2015, at 24(0/7) to 31(6/7) weeks of gestational age and birth weight <1500 g. Composite outcomes were in-hospital mortality or any of severe neurologic injury, treated retinopathy of prematurity, and bronchopulmonary dysplasia (BPD); and same composite outcome excluding BPD. Secondary outcomes were mortality and individual morbidities. For each country, annual outcome trends and adjusted relative risks comparing epoch 2 (2012-2015) to epoch 1 (2007-2011) were analyzed.
Results
For composite outcome including BPD, the trend decreased in Canada and Israel but increased in Australia and New Zealand, Japan, Spain, Sweden, and the United Kingdom. For composite outcome excluding BPD, the trend decreased in all countries except Spain, Sweden, Tuscany, and the United Kingdom. The risk of composite outcome was lower in epoch 2 than epoch 1 in Canada (adjusted relative risks 0.78; 95% CI 0.74-0.82) only. The risk of composite outcome excluding BPD was significantly lower in epoch 2 compared with epoch 1 in Australia and New Zealand, Canada, Finland, Japan, and Switzerland. Mortality rates reduced in most countries in epoch 2. BPD rates increased significantly in all countries except Canada, Israel, Finland, and Tuscany.
Conclusions
In most countries, mortality decreased whereas BPD increased for neonates born very preterm
TRY plant trait database – enhanced coverage and open access
Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model
We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society
Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background
The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society
Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)
[no abstract available
- …