52 research outputs found
AUTOMATED BUILDING DETECTION USING RANSAC FROM CLASSIFIED LIDAR POINT CLOUD DATA
For the past 10 years, the Philippines has seen and experienced the growing force of different natural disasters and because of this the Philippine governement started an initiative to use LiDAR technology in the forefront of disaster management to mitigate the effects of these natural phenomenons. The study aims to help the initiative by determining the shape, number and distribution and location of buildings within a given vicinity. The study implements a Python script to automate the detection of the different buildings within a given area using a RANSAC Algorithm to process the Classified LiDAR Dataset. Pre-processing is done by clipping the LiDAR data into a sample area. The program starts by using the a Python module to read .LAS files then implements the RANSAC algorithm to detect roof planes from a given set of parameters. The detected planes are intersected and combined by the program to define the roof of a building. Points lying on the detected building are removed from the initial list and the program runs again. A sample area in Pulilan, Bulacan was used. A total of 8 out of 9 buildings in the test area were detected by the program and the difference in area between the generated shapefile and the digitized shapefile were compared
Recommended from our members
Fundamental study of ash formation and deposition: Effect of reducing stoichiometry. Final report, April 1, 1993--June 30, 1995
The technical objectives of this project are: (1) To identify the partitioning of inorganic coal constituents among vapor, submicron fume, and fly ash products generated during the combustion of pulverized coal under a variety of combustion conditions. Fuel lean and fuel rich combustion conditions are considered. (2) To identify and quantify the fundamental processes by which the transformations of minerals and organically-associated inorganic species occur. Emphasis is placed on identifying any changes that occur as a result of combustion under sub-stoichiometric combustion conditions. (3) To incorporate the effects of combustion stoichiometry into an Engineering Model for Ash Formation
Recommended from our members
Fundamental study of ash formation and deposition: Effect of reducing stoichiometry. Quarterly Report No. 8, January 1, 1995--March 31, 1995
The objectives of this research program include: the identification of the partitioning of inorganic coal constituents among vapor, submicron fume, and fly ash products generated during pulverized coal combustion; identification of fundamental processes by which the transformation of minerals and organically associated species occurs; the incorporation of the effects of combustion stoichiometry into an engineering model for ash formation
Recommended from our members
Toxic substances from coal combustion -- A comprehensive assessment. Quarterly report, October 1, 1996--December 31, 1996
The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UKy), the University of Connecticut, and Princeton University to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NOx combustion systems, and new power generation plants. Development of ToPEM will be based on PSI`s existing Engineering Model for Ash Formation (EMAF). During the past quarter the final program coal, from the Wyodak seam in the Powder River Basin, was acquired and distributed. Extensive coal characterization and laboratory work is underway to develop and test new sub-models. Coal characterization in the past quarter included direct identification of the modes of occurrence of various trace inorganic species in coal and ash using unique analytical techniques such as XAFS analysis and selective leaching. Combustion testing of the bituminous coals continued and additional data were obtained on trace element vaporization in the combustion zone. Studies of post-combustion trace element transformations, such as mercury speciation in the flue gas, were also begun in the last quarter
Recommended from our members
Toxic substances from coal combustion -- a comprehensive assessment. Quarterly technical progress report, 1 April 1996--30 June 1996
Before electric utilities can plan or implement emissions minimization strategies for hazardous pollutants, they must have an accurate and site-specific means of predicting emissions in all effluent streams for the broad range of fuels and operating conditions commonly utilized. Development of a broadly applicable emissions model useful to utility planners first requires a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion (specifically in Phase I, As, Se, Cr, and possibly Hg). PSI Technologies (PSIT) and its team members will achieve this objective through the development of an {open_quotes}Engineering Model{close_quotes} that accurately predicts the formation and partitioning of toxic species as a result of coal combustion. The {open_quotes}Toxics Partitioning Engineering Model{close_quotes} (ToPEM) will be applicable to all conditions including new fuels or blends, low-NO{sub x} combustion systems, and new power systems being advanced by DOE in the Combustion 2000 program. This report describes the mineralogy and chemical analysis of bituminous coal samples
Recommended from our members
Toxic substances from coal combustion -- A comprehensive assessment. Quarterly report number 2, January 1--March 31, 1996
The technical objectives of this project are: to identify the effect of the mode-of-occurrence of toxic elements in coal on the partitioning of these elements among vapor, submicron fume, and fly ash during the combustion of pulverized coal; to identify the mechanisms governing the post-vaporization interaction of toxic elements and major minerals or unburnt char; to determine the effect of combustion environment (i.e., fuel rich or fuel lean) on the partitioning of trace elements between vapor, submicron fume, and fly ash during the combustion of pulverized coal; to model the partitioning of toxic elements between various chemical species in the vapor phase and between the vapor phase and complex aluminosilicate melts; and to develop a frame work for incorporating the results of the program into the Engineering Model for Ash Formation (EMAF). A description of the work plan for accomplishing these objectives is presented in Section 2 of this report. In Section 3 of this report the authors define a detailed list of deliverables expected and consists of a group by group breakdown of the critical experiments to be performed, and a discussion of how that data fits into the overall program. In Section 4 the four coals selected for this program are reported. In Section 5 preliminary XAFs analysis by UKy personnel is discussed. Section 6 consists of a discussion of trace element analysis (INAA) of two size fractions of the Elkhorn-Hazard coal. A discussion of the modifications to the U.Arizona self-sustained combustor is presented in Section 7. Modifications included addition of a baghouse and improvements in the on-line safety and analytical systems. In Section 8 a detailed QA/QC protocol is presented
Recommended from our members
Fundamental study of ash formation and deposition: Effect of reducing stoichiometry. Quarterly report No. 3, October 1, 1993--December 31, 1993
The technical objectives of this project are: (a) to identify the partitioning of inorganic coal constituents among vapor, submicron fume, and fly ash products generated during the combustion of pulverized coal under a variety of combustion conditions. Fuel lean and fuel rich combustion conditions will be considered. (b) To identify and quantify the fundamental processes by which the transformations of minerals and organically-associated inorganic species occurs. Emphasis will be placed on identifying any changes that occur as a result of combustion under substoichiometric combustion conditions. (c) To incorporate the effects of combustion stoichiometry into an Engineering Model for Ash Formation based upon the understanding developed in (a) and (b). When completed, this model will predict the particle size and chemical composition distributions of ash formed during the combustion of pulverized coal under a broad range of conditions
Recommended from our members
Fundamental study of ash formation and deposition: Effect of reducing stoichiometry. Quarterly report No. 2, 1 July 1993--30 September 1993
The technical objectives of this project are: To identify the partitioning of inorganic coal constituents among vapor, submicron fume, and fly ash products generated during the combustion of pulverized coal under a variety of combustion conditions. Fuel lean and fuel rich combustion conditions will be considered. To identify and quantify the fundamental processes by which the transformations of minerals and organically-associated inorganic species occur. Emphasis will be placed on identifying any changes that occur as a result of combustion under sub-stoichiometric combustion conditions. To incorporate the effects of combustion stoichiometry into an Engineering Model for Ash Formation based upon the understanding developed in (a) and (b). When completed, this model wig predict the particle size and chemical composition distributions of ash formed during the combustion of pulverized coal under a broad range of conditions. The work discussed in this report highlights the accomplishments of the second quarter of this two year project. This includes the final selection of coals by PSI PowerServe, the results of initial in-situ XAFS combustion measurements by the University of Kentucky, a review of the status of ash formation and deposition models by MIT, modeling of iron behavior during coal combustion by the University of Arizona, preliminary work on the redistribution of minerals within char during the early stages of combustion by PSI PowerServe, and the incorporation of a char fragmentation mechanism into the ash formation model by PSI PowerServe
Recommended from our members
Toxic Substances from Coal Combustion: A Comprehensive Assessment: Quarterly report, 1 July 1996-30 September 1996
The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPS) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Pittsburgh Energy Technology Center (PETC), the Electric Power Research Institute (EPRI), and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UKy), the University of Connecticut, and Princeton University to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NO{sub x}, combustion systems, and new power generation plants. Development of ToPEM will be based on PSI`s existing Engineering Model for Ash Formation (EMAF). Extensive coal characterization and laboratory work has begun in order to develop and test new sub-models. Trace element concentrations in the Pittsburgh, Elkhorn/Hazard, and Illinois No. 6 coals, and in size/density fractions of these coals, were completed. Coal characterization in the past quarter also included direct identification of the modes of occurrence of various trace inorganic species in coal and ash using unique analytical techniques such as XAFS analysis and selective leaching. Combustion testing of these two coals was begun and preliminary data obtained on trace element 0301 vaporization in the combustion zone. Modeling efforts in the past quarter include the development on a preliminary model to assess mercury speciation in combustion systems
- …