59 research outputs found

    The “Knowledgeable” CT Scanner: Optimization by technological advancements

    Get PDF
    Optimization of a computed tomography (CT) exam can be challenging, as there is a wide variety in patient characteristics, continuously emerging technologies and the inc

    Efficacy of a dynamic collimator for overranging dose reduction in a second- and third-generation dual source CT scanner

    Get PDF
    Objectives: The purpose of this study was to assess the efficacy of the renewed dynamic collimator in a third-generation dual source CT (DSCT) scanner and to determine the improvements over the second-generation scanner. Methods: Collimator efficacy is defined as the percentage overranging dose in terms of dose–length product (DLP) that is blocked by the dynamic collimator relative to the total overranging dose in case of a static collimator. Efficacy was assessed at various pitch values and different scan lengths. The number of additional rotations due to overranging and effective scan length were calculated on the basis of reported scanning parameters. On the basis of these values, the efficacy of the collimator was calculated. Results: The second-generation scanner showed decreased performance of the dynamic collimator at increasing pitch. Efficacy dropped to 10% at the highest pitch. For the third-generation scanner the efficacy remained above 50% at higher pitch. Noise was for some pitch values slightly higher at the edge of the imaged volume, indicating a reduced scan range to reduce the overranging dose. Conclusions: The improved dynamic collimator in the third-generation scanner blocks the overranging dose for more than 50% and is more capable of shielding radiation dose, especially in high pitch scan modes. Key points: • Overranging dose is to a large extent blocked by the dynamic collimator• Efficacy is strongly improved within the third-generation DSCT scanner• Reducing th

    Technological developments of X-ray computed tomography over half a century: User's influence on protocol optimization

    Get PDF
    Since the introduction of Computed Tomography (CT), technological improvements have been impressive. At the same time, the number of adjustable acquisition and reconstruction parameters has increased substantially. Overall, these developments led to improved image quality at a reduced radiation dose. However, many parameters are interrelated and part of automated algorithms. This makes it more complicated to adjust them individually and more difficult to comprehend their influence on CT protocol adjustments. Moreover, the user's influence in adapting protocol parameters is sometimes limited by the manufacturer's policy or the user's knowledge. As a consequence, optimization can be a challenge. A literature search in Embase, Medline, Cochrane, and Web of Science was performed. The literature was reviewed with the objective to collect information regarding technological developments in CT over the past five decades and the role of the associated acquisition and reconstruction parameters in the optimization process

    Assessment of Iodine Contrast-To-Noise Ratio in Virtual Monoenergetic Images Reconstructed from Dual-Source Energy-Integrating CT and Photon-Counting CT Data

    Get PDF
    To evaluate whether the contrast-to-noise ratio (CNR) of an iodinated contrast agent in virtual monoenergetic images (VMI) from the first clinical photon-counting detector (PCD) CT scanner is superior to VMI CNR from a dual-source dual-energy CT scanner with energy-integrating detectors (EID), two anthropomorphic phantoms in three different sizes (thorax and abdomen, QRM GmbH), in combination with a custom-built insert containing cavities filled with water, and water with 15 mg iodine/mL, were scanned on an EID-based scanner (Siemens SOMATOM Force) and on a PCD-based scanner (Siemens, NAEOTOM Alpha). VMI (range 40–100 keV) were reconstructed without an iterative reconstruction (IR) technique and with an IR strength of 60% for the EID technique (ADMIRE) and closest matching IR strengths of 50% and 75% for the PCD technique (QIR). CNR was defined as the difference in mean CT numbers of water, and water with iodine, divided by the root mean square value of the measured noise in water, and water with iodine. A two-sample t-test was performed to evaluate differences in CNR between images. A p-value &lt; 0.05 was considered statistically significant. For VMI without IR and below 60 keV, the CNR of the PCD-based images at 120 and 90 kVp was up to 55% and 75% higher than the CNR of the EID-based images, respectively (p &lt; 0.05). For VMI above 60 keV, CNRs of PCD-based images at both 120 and 90 kVp were up to 20% lower than the CNRs of EID-based images. Similar or improved performance of PCD-based images in comparison with EID-based images were observed for VMIs reconstructed with IR techniques. In conclusion, with PCD-CT, iodine CNR on low energy VMI (&lt;60 keV) is better than with EID-CT.</p

    Dose reduction for CT coronary calcium scoring with a calcium-aware image reconstruction technique: a phantom study

    Get PDF
    Objective: To assess the dose reduction potential of a calcium-aware reconstruction technique, which aims at tube voltage-independent computed tomography (CT) numbers for calcium. Methods and materials: A cardiothoracic phantom, mimicking three different patient sizes, was scanned with two calcium inserts (named D100 and CCI), containing calcifications varying in size and density. Tube voltage was varied both manually (range 70–150 and Sn100 kVp) and automatically. Tube current was automatically adapted to maintain reference image quality defined at 120 kVp. Data was reconstructed with the standard reconstruction technique (kernel Qr36) and the calcium-aware reconstruction technique (kernel Sa36). We assessed the radiation dose reduction potential (volumetric CT dose index values (CTDIvol)), noise (standard deviation (SD)), mean CT number (HU) of each calcification, and Agatston scores for varying kVp. Results were compared with the reference acquired at 120 kVp and reconstructed with Qr36. Results: Automatic selection of the optimal tube voltage resulted in a CTDIvol reduction of 22%, 15%, and 12% compared with the reference for the small, medium, and large phantom, respectively. CT numbers differed up to 64% for the standard reconstruction and 11% for the calcium-aware reconstruction. Similarly, Agatston scores deviated up to 40% and 8% for the standard and calcium-aware reconstruction technique, respectively. Conclusion: CT numbers remained consistent with comparable calcium scores when the calcium-aware image reconstruction technique was applied with varying tube voltage. Less consistency was observed in small calcifications with low density. Automatic reduction of tube voltage resulted in a dose reduction of up to 22%. Key Points: •

    Coronary calcium scoring on virtual non-contrast and virtual non-iodine reconstructions compared to true non-contrast images using photon-counting computed tomography

    Get PDF
    Objectives: To compare coronary artery calcification (CAC) scores measured on virtual non-contrast (VNC) and virtual non-iodine (VNI) reconstructions computed from coronary computed tomography angiography (CCTA) using photon-counting computed tomography (PCCT) to true non-contrast (TNC) images. Methods: We included 88 patients (mean age = 59 years ± 13.5, 69% male) who underwent a TNC coronary calcium scan followed by CCTA on PCCT. VNC images were reconstructed in 87 patients and VNI in 88 patients by virtually removing iodine from the CCTA images. For all reconstructions, CAC scores were determined, and patients were classified into risk categories. The overall agreement of the reconstructions was analyzed by Bland–Altman plots and the level of matching classifications. Results: The median CAC score on TNC was 27.8 [0–360.4] compared to 8.5 [0.2–101.6] (p &lt; 0.001) on VNC and 72.2 [1.3–398.8] (p &lt; 0.001) on VNI. Bland–Altman plots depicted a bias of 148.8 (ICC = 0.82, p &lt; 0.001) and − 57.7 (ICC = 0.95, p &lt; 0.001) for VNC and VNI, respectively. Of all patients with CAC TNC = 0, VNC reconstructions scored 63% of the patients correctly, while VNI scored 54% correctly. Of the patients with CAC TNC &gt; 0, VNC and VNI reconstructions detected the presence of coronary calcium in 90% and 92% of the patients. CAC VNC tended to underestimate CAC score, whereas CAC VNI overestimated, especially in the lower risk categories. According to the risk categories, VNC misclassified 55% of the patients, while VNI misclassified only 32%. Conclusion: Compared to TNC images, VNC underestimated and VNI overestimated the actual CAC scores. VNI reconstructions quantify and classify coronary calcification scores more accurately than VNC reconstructions. Clinical relevance statement: Photon-counting CT enables spectral imaging, which might obviate the need for non-contrast enhanced coronary calcium scoring, but optimization is necessary for the clinical implementation of the algorithms. Key Points: • Photon-counting computed tomography uses spectral information to virtually remove the signal of contrast agents from contrast-enhanced scans. • Virtual non-contrast reconstructions tend to underestimate coronary artery calcium scores compared to true non-contrast images, while virtual non-iodine reconstructions tend to overestimate the calcium scores. • Virtual non-iodine reconstructions might obviate the need for non-contrast enhanced calcium scoring, but optimization is necessary for the clinical implementation of the algorithms.</p

    Coronary calcium scores on dual-source photon-counting computed tomography:an adapted Agatston methodology aimed at radiation dose reduction

    Get PDF
    OBJECTIVES: The aim of this study was to determine mono-energetic (monoE) level-specific photon-counting CT (PCCT) Agatston thresholds, to yield monoE level independent Agatston scores validated with a dynamic cardiac phantom. Also, we examined the potential of dose reduction for PCCT coronary artery calcium (CAC) studies, when reconstructed at low monoE levels. METHODS: Theoretical CAC monoE thresholds were calculated with data from the National Institute of Standards and Technology (NIST) database. Artificial CAC with three densities were moved in an anthropomorphic thorax phantom at 0 and 60-75 bpm, and scanned at full and 50% dose on a first-generation dual-source PCCT. For all densities, Agatston scores and maximum CT numbers were determined. Agatston scores were compared with the reference at full dose and 70 keV monoE level; deviations (95% confidence interval) < 10% were deemed to be clinically not-relevant. RESULTS: Averaged over all monoE levels, measured CT numbers deviated from theoretical CT numbers by 6%, 13%, and - 4% for low-, medium-, and high-density CAC, respectively. At 50% reduced dose and 60-75 bpm, Agatston score deviations were non-relevant for 60 to 100 keV and 60 to 120 keV for medium- and high-density CAC, respectively. CONCLUSION: MonoE level-specific Agatston score thresholds resulted in similar scores as in standard reconstructions at 70 keV. PCCT allows for a potential dose reduction of 50% for CAC scoring using low monoE reconstructions for medium- and high-density CAC. KEY POINTS: • Mono-energy level-specific Agatston thresholds allow for reproducible coronary artery calcium quantification on mono-energetic images. • Increased calcium contrast-to-noise ratio at reduced mono-energy levels allows for coronary artery calcium quantification at 50% reduced radiation dose for medium- and high-density calcifications

    Accuracy of automated patient positioning in CT using a 3D camera for body contour detection

    Get PDF
    Objective: To assess the accuracy of a 3D camera for body contour detection and patient positioning in CT compared to routine manual positioning by radiographers. Methods and materials: Four hundred twenty-three patients that underwent CT of the head, thorax, and/or abdomen on a scanner with manual table height selection and 254 patients on a scanner with table height suggestion by a 3D camera were retrospectively included. Within the camera group, table height suggestion was based on infrared body contour detection and fitting of a scalable patient model to the 3D data. Proper positioning was defined as the ideal table height at which the scanner isocenter coincides with the patient’s isocenter. Patient isocenter was computed by automatic skin contour extraction in each axial image and averaged over all images. Table heights suggested by the camera and selected by the radiographer were compared with the ideal height. Results: Median (interquartile range) absolute table height deviation in millimeter was 12.0 (21.6) for abdomen, 12.2 (12.0) for head, 13.4 (17.6) for thorax-abdomen, and 14.7 (17.3) for thorax CT scans positioned by radiographers. The deviation was significantly less (p < 0.01) for the 3D camera at 6.3 (6.9) for abdomen, 9.5 (6.8) for head, 6.0 (6.1) for thorax-abdomen, and 5.4 (6.4) mm for thorax. Conclusion: A 3D camera for body contour detection allows for accurate patient positioning, thereby outperforming manual positioning done by radiographers, resulting in significantly smaller deviations from the ideal table height. However, radiographers remain indispensable when the system fails or in challenging cases. Key Points: • A 3D camera for body contour detection allows for accurate patient positioning. • A 3D camera outperformed radiographers in patient positioning in CT. • Deviation from ideal table height was more extreme for patients positioned by radiographers for all body parts

    Reproducibility of coronary artery calcium quantification on dual-source CT and dual-source photon-counting CT:a dynamic phantom study

    Get PDF
    To systematically compare coronary artery calcium (CAC) quantification between conventional computed tomography (CT) and photon-counting CT (PCCT) at different virtual monoenergetic (monoE) levels for different heart rates. A dynamic (heart rates of 0,  75 bpm) anthropomorphic phantom with three calcification densities was scanned using routine clinical CAC protocols with CT and PCCT. In addition to the standard clinical protocol of 70 keV, PCCT images were reconstructed at monoE levels of 72, 74, and 76 keV. CAC was quantified using Agatston, volume, and mass scores. Agatston scores 95% confidence intervals (CI) were calculated and compared between PCCT and CT. Volume and mass scores were compared with physical quantities. For all CAC densities, routine clinical protocol Agatston scores of static CAC were higher for PCCT compared to CT. At < 60 bpm, Agatston scores at 74 and 76 keV reconstructions were reproducible (overlapping CI) for PCCT and CT. Increased heart rates yielded different Agatston scores for PCCT in comparison with CT, for all monoE levels. Low density CAC volume scores showed the largest deviation from physical volume, with mean deviations of 59% and 77% for CT and PCCT, respectively. Overall, mass scores underestimated physical mass by 10%, 38%, and 59% for low, medium, and high density CAC, respectively. PCCT allows for reproducible Agatston scores for dynamic CAC (< 60 bpm) when reconstructed at monoE levels of 74 or 76 keV, regardless of CAC density. Deviations from physical volume and mass were, in general, large for both CT and PCCT
    corecore