6,951 research outputs found

    Appropriate Models In Decision Support Systems For River Basin Management

    Get PDF
    In recent years, new ideas and techniques appear very quickly, like sustainability, adaptive management, Geographic Information System, Remote Sensing and participations of new stakeholders, which contribute a lot to the development of decision support systems in river basin management. However, the role of models still needs to be emphasized, especially for model-based decision support systems. This paper aims to find appropriate models for decision support systems. An appropriate system is defined as ‘the system can produce final outputs which enable the decision makers to distinguish different river engineering measures according to the current problem’. An appropriateness framework is proposed mainly based on uncertainty and sensitivity analysis. A flood risk model is used, as a part of the Dutch River Meuse DSS to investigate whether the appropriate framework works. The results showed that the proposed approach is applicable and helpful to find appropriate models

    Identification of appropriate temporal scales of dominant low flow indicators in the Main River, Germany

    Get PDF
    Models incorporating the appropriate temporal scales of dominant indicators for low flows are assumed to perform better than models with arbitrary selected temporal scales. In this paper, we investigate appropriate temporal scales of dominant low flow indicators: precipitation (P), evapotranspiration (ET) and the standardized groundwater storage index (G). This analysis is done in the context of low flow forecasting with a lead time of 14 days in the Main River, a tributary of the Rhine River, located in Germany. Correlation coefficients (i.e. Pearson, Kendall and Spearman) are used to reveal the appropriate temporal scales of dominant low flow indicators at different time lags between low flows and indicators and different support scales of indicators. The results are presented for lag values and support scales, which result in correlation coefficients between low flows and dominant indicators falling into the maximum 10% percentile range. P has a maximum Spearman correlation coefficient (ρ) of 0.38 (p = 0.95) at a support scale of 336 days and a lag of zero days. ET has a maximum ρ of –0.60 (p = 0.95) at a support scale of 280 days and a lag of 56 days and G has a maximum ρ of 0.69 (p = 0.95) at a support scale of 7 days and a lag of 3 days. The identified appropriate support scales and lags can be used for low flow forecasting with a lead time of 14 days

    Virtual sensors for local, three dimensional, broadband multiple-channel active noise control and the effects on the quiet zones

    Get PDF
    In this paper, two state of the art virtual sensor algorithms, i.e. the Remote Microphone Technique (RMT) and the Kalman filter based Virtual Sensing algorithm (KVS) are compared, in both state space (SS) and finite impulse response (FIR) implementations. The comparison focuses on the accuracy of the estimated sound pressure signals at the virtual locations and is based on actual measurements in a practical situation. The FIR implementation of the RMT algorithm was found to produce the most reliable results. It is implemented in a local, three dimensional, real-time, multiple-channel, broadband active noise control system. With this implementation, the benefits and limitations of the RMT-ANC system on the shape and size of the quiet zones are investigated

    Impacts of trends and uncertainties in river flooding due to climate change

    Get PDF
    Projected climate changes will have an effect on frequencies and duration of\ud river flooding and therefore on design criteria for dikes or on risk assessment. In\ud addition to existing sources of uncertainty, extremes and variability of climatological\ud input will change. To deal with this problem the purpose of this project can be split into\ud two main parts. First, to identify possible effects of climate changes on extreme\ud discharges of rivers and particularly the uncertainty involved. Second, to determine the\ud appropriate level of modelling needed to predict such effects taking into account the\ud uncertainties. The major subsystems are climate, catchment and river. Important aspects\ud are the additional uncertainty introduced by each subsystem and the appropriate level of\ud modelling a subsystem. In this paper some preliminary excersises to address these\ud questions with respect to catchment and river are shown, based on very schematic\ud models not representing any particular catchment

    Deterministic-statistical model coupling in a DSS for river-basin management

    Get PDF
    This paper presents a method for appropriate coupling of deterministic and statistical models. In the decision-support system for the Elbe river, a conceptual rainfall-runoff model is used to obtain the discharge statistics and corresponding average number of flood days, which is a key input variable for a rule-based model for floodplain vegetation. The required quality of the discharge time series cannot be determined by a sensitivity analysis because a deterministic model is linked to a statistical model. To solve the problem, artificial discharge time series are generated that mimic the hypothetical output of rainfall-runoff models of different accuracy. The results indicate that a feasible calibration of the rainfall-runoff model is sufficient to obtain consistency with the vegetation model in view of its sensitivity to changes in the number of flood days in the floodplains

    A Comparison of Hand-Geometry Recognition Methods Based on Low- and High-Level Features

    Get PDF
    This paper compares the performance of hand-geometry recognition based on high-level features and on low-level features. The difference between high- and low-level features is that the former are based on interpreting the biometric data, e.g. by locating a finger and measuring its dimensions, whereas the latter are not. The low-level features used here are landmarks on the contour of the hand. The high-level features are a standard set of geometrical features such as widths and lengths of fingers and angles, measured at preselected locations
    corecore