57 research outputs found

    Intracapsular pressure and interleukin-1β cytokine in hips with acetabular dysplasia

    Get PDF
    Background and purpose Several studies have demonstrated an increased intracapsular pressure in several hip disorders such as septic arthritis, synovitis, and trauma. We therefore measured the intracapsular pressure in different positions in early dysplasic hips and its relation to the concentration of interleukin-1β (IL-1β), the volume of joint fluid, and the clinical and radiographic findings before a periacetabular osteotomy

    Confinement studies of neutral beam heated discharges in TFTR

    No full text
    The TFTR tokamak has reached its original machine design specifications (I/sub p/ = 2.5 MA and B/sub T/ = 5.2T). Recently, the D/sup 0/ neutral beam heating power has been increased to 6.3 MW. By operating at low plasma current (I/sub p/ approx. = 0.8 MA) and low density anti n/sub e/ approx. = 1 x 10/sup 19/m/sup -3/), high ion temperatures (9 +- keV) and rotation speeds (7 x 10/sup 5/ m/s) have been achieved during injection. At the opposite extreme, pellet injection into high current plasmas has been used to increase the line-average density to 8 x 10/sup 19/m/sup -3/ and the central density to 1.6 x 10/sup 20/m/sup -3// This wide range of operating conditions has enabled us to conduct scaling studies of the global energy confinement time in both ohmically and beam heated discharges as well as more detailed transport studies of the profile dependence. In ohmic discharges, the energy confinement time is observed to scale linearly with density only up to anti n/sub e/ approx. 4.5 x 10/sup 19/m/sup -3/ and then to increase more gradually, achieving a maximum value of approx. 0.45 s. In beam heated discharges, the energy confinement time is observed to decrease with beam power and to increase with plasma current. With P/sub b/ = 5.6 MW, anti n/sub e/ = 4.7 x 10/sup 19/m/sup -3/, I/sub p/ = 2.2 MA and B/sub T = 4.7T, the gross energy confinement time is 0.22 s and T/sub i/(0) = 4.8 keV. Despite shallow penetration of D/sup 0/ beams (at the beam energy less than or equal to 80 keV with low species yield), tau/sub E/(a) values are as large as those for H/sup 0/ injection, but central confinement times are substantially greater. This is a consequence of the insensitivity of the temperature and safety factor profile shapes to the heating profile. The radial variation of tau/sub E/ is even more pronounced with D/sup 0/ injection into high density pellet-injected plasmas. 25 refs

    Development and Implementation of a Curricular-wide Electronic Portfolio System in a School of Pharmacy

    No full text
    The Feik School of Pharmacy collaborated with a commercial software development company to create a Web-based e-portfolio system to document student achievement of curricular outcomes and performance in pharmacy practice experiences. The multi-functional system also could be used for experiential site selection and assignment and continuing pharmacy education. The pharmacy school trained students, faculty members, and pharmacist preceptors to use the e-portfolio system. All pharmacy students uploaded the required number of documents and assessments to the program as evidence of achievement of each of the school's curricular outcomes and completion of pharmacy practice experiences

    Experimental results from detached plasmas in TFTR

    No full text
    Detached plasmas are formed in TFTR which have the principal property of the boundary to the high temperature plasma core being defined by a radiating layer. This paper documents the properties of TFTR ohmic-detached plasmas with a range of plasma densities at two different plasma currents

    Discharge control and evolution in TFTR

    No full text
    The TFTR tokamak is used to evaluate discharge evolution and control, when these are broken down into discharge, initiation, volt-second consumption, and current and density ramp-up and ramp-down. Control of the current ramp-up using a plasma growing technique will be described, and the advantages of this method compared to using constant major and minor radii will be discussed. The control of density using gas puffing, pellet injection, and neutral beam fueling will be presented, along with a discussion of the density range which is found to increase with plasma current. 23 refs., 11 figs., 2 tabs
    corecore