78 research outputs found
Compound Evolutionary History of the Rhesus Macaque Mhc Class I B Region Revealed by Microsatellite Analysis and Localization of Retroviral Sequences
In humans, the single polymorphic B locus of the major histocompatibility complex is linked to the microsatellite MIB. In rhesus macaques, however, haplotypes are characterized by the presence of unique combinations of multiple B genes, which may display different levels of polymorphism. The aim of the study was to shed light on the evolutionary history of this highly complex region. First, the robustness of the microsatellite MIB-linked to almost half of the B genes in rhesus macaques (Mamu-B)–for accurate B haplotyping was studied. Based on the physical map of an established haplotype comprising 7 MIB loci, each located next to a certain Mamu-B gene, two MIB loci, MIB1 and MIB6, were investigated in a panel of MHC homozygous monkeys. MIB1 revealed a complex genotyping pattern, whereas MIB6 analysis resulted in the detection of one or no amplicon. Both patterns are specific for a given B haplotype, show Mendelian segregation, and even allow a more precise haplotype definition than do traditional typing methods. Second, a search was performed for retroelements that may have played a role in duplication processes as observed in the macaque B region. This resulted in the description of two types of duplicons. One basic unit comprises an expressed Mamu-B gene, adjacent to an HERV16 copy closely linked to MIB. The second type of duplicon comprises a Mamu-B (pseudo)gene, linked to a truncated HERV16 structure lacking its MIB segment. Such truncation seems to coincide with the loss of B gene transcription. Subsequent to the duplication processes, recombination between MIB and Mamu-B loci appears to have occurred, resulting in a hyperplastic B region. Thus, analysis of MIB in addition to B loci allows deciphering of the compound evolutionary history of the class I B region in Old World monkeys
A snapshot of the Mamu-B genes and their allelic repertoire in rhesus macaques of Chinese origin
The major histocompatibility complex class I gene repertoire was investigated in a large panel of rhesus macaques of Chinese origin. As observed in Indian animals, subjects of Chinese derivation display Mamu-B gene copy number variation, and the sum of expressed genes varies among haplotypes. In addition, these genes display differential transcription levels. The majority of the Mamu-B alleles discovered during this investigation appear to be unique for the population studied. Only one particular Mamu-B haplotype is shared between Indian and Chinese animals, and it must have been present in the progenitor stock. Hence, the data highlight the fact that most allelic polymorphism, and most of the Mamu-B haplotypes themselves, are of relatively recent origin and were most likely generated after the separation of the Indian and Chinese rhesus macaque populations
The mosaic of KIR haplotypes in rhesus macaques
To further refine and improve biomedical research in rhesus macaques, it is necessary to increase our knowledge concerning both the degree of allelic variation (polymorphism) and diversity (gene copy number variation) in the killer cell immunoglobulin-like receptor (KIR) gene cluster. Pedigreed animals in particular should be studied, as segregation data will provide clues to the linkage of particular KIR genes/alleles segregating on a haplotype and to its gene content as well. A dual strategy allowed us to screen the presence and absence of genes and the corresponding transcripts, as well as to track differences in transcription levels. On the basis of this approach, 14 diverse KIR haplotypes have been described. These haplotypes consist of multiple inhibitory and activating Mamu-KIR genes, and any gene present on one haplotype may be absent on another. This suggests that the cost of accelerated evolution by recombination may be the loss of certain framework genes on a haplotype
Genomic plasticity of the MHC class I A region in rhesus macaques: extensive haplotype diversity at the population level as revealed by microsatellites
The Mamu-A genes of the rhesus macaque show different degrees of polymorphism, transcription level variation, and differential haplotype distribution. Per haplotype, usually one “major” transcribed gene is present, A1 (A7), in various combinations with “minor” genes, A2 to A6. In silico analysis of the physical map of a heterozygous animal revealed the presence of similar Mamu-A regions consisting of four duplication units, but with dissimilar positions of the A1 genes on both haplotypes, and in combination with different minor genes. Two microsatellites, D6S2854 and D6S2859, have been selected as potential tools to characterize this complex region. Subsequent analysis of a large breeding colony resulted in the description of highly discriminative patterns, displaying copy number variation in concert with microsatellite repeat length differences. Sequencing and segregation analyses revealed that these patterns are unique for each Mamu-A haplotype. In animals of Indian, Burmese, and Chinese origin, 19, 15, or 9 haplotypes, respectively, could be defined, illustrating the occurrence of differential block duplications and subsequent rearrangements by recombination. The haplotypes can be assigned to 12 unique combinations of genes (region configurations). Although most configurations harbor two transcribed A genes, one or three genes per haplotype are also present. Additionally, haplotypes lacking an A1 gene or with an A1 duplication appear to exist. The presence of different transcribed A genes/alleles in monkeys from various origins may have an impact on differential disease susceptibilities. The high-throughput microsatellite technique will be a valuable tool in animal selection for diverse biomedical research projects
MHC class I A region diversity and polymorphism in macaque species
The HLA-A locus represents a single copy gene that displays abundant allelic polymorphism in the human population, whereas, in contrast, a nonhuman primate species such as the rhesus macaque (Macaca mulatta) possesses multiple HLA-A-like (Mamu-A) genes, which parade varying degrees of polymorphism. The number and combination of transcribed Mamu-A genes present per chromosome display diversity in a population of Indian animals. At present, it is not clearly understood whether these different A region configurations are evolutionarily stable entities. To shed light on this issue, rhesus macaques from a Chinese population and a panel of cynomolgus monkeys (Macaca fascicularis) were screened for various A region-linked variations. Comparisons demonstrated that most A region configurations are old entities predating macaque speciation, whereas most allelic variation (>95%) is of more recent origin. The latter situation contrasts the observations of the major histocompatibility complex class II genes in rhesus and cynomolgus macaques, which share a high number of identical alleles (>30%) as defined by exon 2 sequencing
Extensive DRB region diversity in cynomolgus macaques: recombination as a driving force
The DR region of primate species is generally complex and displays diversity concerning the number and combination of distinct types of DRB genes present per region configuration. A highly variable short tandem repeat (STR) present in intron 2 of nearly all primate DRB genes can be utilized as a quick and accurate high through-put typing procedure. This approach resulted previously in the description of unique and haplotype-specific DRB-STR length patterns in humans, chimpanzees, and rhesus macaques. For the present study, a cohort of 230 cynomolgus monkeys, including self-sustaining breeding groups, has been examined. MtDNA analysis showed that most animals originated from the Indonesian islands, but some are derived from the mainland, south and north of the Isthmus of Kra. Haplotyping and subsequent sequencing resulted in the detection of 118 alleles, including 28 unreported ones. A total of 49 Mafa-DRB region configurations were detected, of which 28 have not yet been described. Humans and chimpanzees possess a low number of different DRB region configurations in concert with a high degree of allelic variation. In contrast, however, allelic heterogeneity within a given Mafa-DRB configuration is even less frequently observed than in rhesus macaques. Several of these region configurations appear to have been generated by recombination-like events, most probably propagated by a retroviral element mapping within DRB6 pseudogenes, which are present on the majority of haplotypes. This undocumented high level of DRB region configuration-associated diversity most likely represents a species-specific strategy to cope with various pathogens
Definition of Mafa-A and -B haplotypes in pedigreed cynomolgus macaques (Macaca fascicularis)
The major histocompatibility complex (MHC) class I B gene/allelic repertoire was investigated in a pedigreed population of cynomolgus macaques of mixed Indonesian/Malaysian origin. The Mafa-B alleles detected in this cohort are mostly specific for a given geographic area, and only a small number of alleles appears to be shared with other populations. This suggests the fast evolution of Mafa-B alleles due to adaptation to new environments. In contrast to humans, the B locus in Old World monkeys displays extensive copy number variation. The Mafa-B and previously defined -A gene combinations segregate in families and thus allowed the definition of extended haplotypes. In many cases it was possible to assign a particular Mafa-I allele to one of these Mafa-A/B haplotypes as well. The presence of a large number of stable haplotypes in this cohort of animals, which was pedigreed for up to eight generations, looks promising for developing discriminative MHC typing tools that are less cumbersome. Furthermore, the discovery of 53 unreported Mafa-B sequences expands the lexicon of alleles significantly, and may help in understanding the complex organisation of the macaque B region
Nomenclature for the KIR of non-human species
The increasing number of Killer Immunoglobulin-like Receptor (KIR) sequences available for non-human primate species and cattle has prompted development of a centralized database, guidelines for a standardized nomenclature, and minimum requirements for database submission. The guidelines and nomenclature are based on those used for human KIR and incorporate modifications made for inclusion of non-human species in the companion IPD-NHKIR database. Included in this first release are the rhesus macaque (Macaca mulatta), chimpanzee (Pan troglodytes), orangutan (Pongo abelii and Pongo pygmaeus), and cattle (Bos taurus)
- …