10 research outputs found

    Attention and motor profiles in children with developmental coordination disorder: A neuropsychological and neuroimaging investigation

    Get PDF
    AIM: This study aimed to (1) quantify attention and executive functioning in children with developmental coordination disorder (DCD), (2) assess whether some children with DCD are more likely to show attention difficulties, and (3) characterize brain correlates of motor and attention deficits. METHOD: Fifty-three children (36 with DCD and 17 without) aged 8 to 10 years underwent T1-weighted and diffusion-weighted magnetic resonance imaging, and standardized attention and motor assessments. Parents completed questionnaires of executive functioning and symptoms of inattention and hyperactivity. We assessed regional cortical thickness and surface area, and cerebellar, callosal, and primary motor tract structure. RESULTS: Analyses of covariance and one-sample t-tests identified impaired attention, non-motor processing speed, and executive functioning in children with DCD, yet partial Spearman's rank correlation coefficients revealed these were unrelated to one another or the type or severity of the motor deficit. Robust regression analyses revealed that cortical morphology in the posterior cingulate was associated with both gross motor skills and inattentive symptoms in children with DCD, while gross motor skills were also associated with left corticospinal tract (CST) morphology. INTERPRETATION: Children with DCD may benefit from routine attention and hyperactivity assessments. Alterations in the posterior cingulate and CST may be linked to impaired forward modelling during movements in children with DCD. Overall, alterations in these regions may explain the high rate of non-motor impairments in children with DCD

    Risk Factors for Perioperative Brain Lesions in Infants With Congenital Heart Disease:A European Collaboration

    Get PDF
    Infants with congenital heart disease are at risk of brain injury and impaired neurodevelopment. The aim was to investigate risk factors for perioperative brain lesions in infants with congenital heart disease. METHODS: Infants with transposition of the great arteries, single ventricle physiology, and left ventricular outflow tract and/or aortic arch obstruction undergoing cardiac surgery <6 weeks after birth from 3 European cohorts (Utrecht, Zurich, and London) were combined. Brain lesions were scored on preoperative (transposition of the great arteries N=104; single ventricle physiology N=35; and left ventricular outflow tract and/or aortic arch obstruction N=41) and postoperative (transposition of the great arteries N=88; single ventricle physiology N=28; and left ventricular outflow tract and/or aortic arch obstruction N=30) magnetic resonance imaging for risk factor analysis of arterial ischemic stroke, cerebral sinus venous thrombosis, and white matter injury. RESULTS: Preoperatively, induced vaginal delivery (odds ratio [OR], 2.23 [95% CI, 1.06–4.70]) was associated with white matter injury and balloon atrial septostomy increased the risk of white matter injury (OR, 2.51 [95% CI, 1.23–5.20]) and arterial ischemic stroke (OR, 4.49 [95% CI, 1.20–21.49]). Postoperatively, younger postnatal age at surgery (OR, 1.18 [95% CI, 1.05–1.33]) and selective cerebral perfusion, particularly at ≤20 °C (OR, 13.46 [95% CI, 3.58–67.10]), were associated with new arterial ischemic stroke. Single ventricle physiology was associated with new white matter injury (OR, 2.88 [95% CI, 1.20–6.95]) and transposition of the great arteries with new cerebral sinus venous thrombosis (OR, 13.47 [95% CI, 2.28–95.66]). Delayed sternal closure (OR, 3.47 [95% CI, 1.08–13.06]) and lower intraoperative temperatures (OR, 1.22 [95% CI, 1.07–1.36]) also increased the risk of new cerebral sinus venous thrombosis. CONCLUSIONS: Delivery planning and surgery timing may be modifiable risk factors that allow personalized treatment to minimize the risk of perioperative brain injury in severe congenital heart disease. Further research is needed to optimize cerebral perfusion techniques for neonatal surgery and to confirm the relationship between cerebral sinus venous thrombosis and perioperative risk factors

    Risk Factors for Perioperative Brain Lesions in Infants With Congenital Heart Disease: A European Collaboration

    Full text link
    Background: Infants with congenital heart disease are at risk of brain injury and impaired neurodevelopment. The aim was to investigate risk factors for perioperative brain lesions in infants with congenital heart disease. Methods: Infants with transposition of the great arteries, single ventricle physiology, and left ventricular outflow tract and/or aortic arch obstruction undergoing cardiac surgery <6 weeks after birth from 3 European cohorts (Utrecht, Zurich, and London) were combined. Brain lesions were scored on preoperative (transposition of the great arteries N=104; single ventricle physiology N=35; and left ventricular outflow tract and/or aortic arch obstruction N=41) and postoperative (transposition of the great arteries N=88; single ventricle physiology N=28; and left ventricular outflow tract and/or aortic arch obstruction N=30) magnetic resonance imaging for risk factor analysis of arterial ischemic stroke, cerebral sinus venous thrombosis, and white matter injury. Results: Preoperatively, induced vaginal delivery (odds ratio [OR], 2.23 [95% CI, 1.06-4.70]) was associated with white matter injury and balloon atrial septostomy increased the risk of white matter injury (OR, 2.51 [95% CI, 1.23-5.20]) and arterial ischemic stroke (OR, 4.49 [95% CI, 1.20-21.49]). Postoperatively, younger postnatal age at surgery (OR, 1.18 [95% CI, 1.05-1.33]) and selective cerebral perfusion, particularly at ≤20 °C (OR, 13.46 [95% CI, 3.58-67.10]), were associated with new arterial ischemic stroke. Single ventricle physiology was associated with new white matter injury (OR, 2.88 [95% CI, 1.20-6.95]) and transposition of the great arteries with new cerebral sinus venous thrombosis (OR, 13.47 [95% CI, 2.28-95.66]). Delayed sternal closure (OR, 3.47 [95% CI, 1.08-13.06]) and lower intraoperative temperatures (OR, 1.22 [95% CI, 1.07-1.36]) also increased the risk of new cerebral sinus venous thrombosis. Conclusions: Delivery planning and surgery timing may be modifiable risk factors that allow personalized treatment to minimize the risk of perioperative brain injury in severe congenital heart disease. Further research is needed to optimize cerebral perfusion techniques for neonatal surgery and to confirm the relationship between cerebral sinus venous thrombosis and perioperative risk factors. Keywords: heart diseases; ischemic stroke; magnetic resonance imaging; pedatrics; risk factors; venous thrombosis; white matter

    MRI studies of brain size and growth in individuals with congenital heart disease

    No full text
    Congenital heart disease (CHD) is the most frequent congenital abnormality. Most infants born with CHD now survive. However, survivors of CHD are at increased risk of neurodevelopmental impairment, which may be due to impaired brain development in the fetal and neonatal period. Magnetic resonance imaging (MRI) provides objective measures of brain volume and growth. Here, we review MRI studies assessing brain volume and growth in individuals with CHD from the fetus to adolescence. Smaller brain volumes compared to healthy controls are evident from around 30 weeks gestation in fetuses with CHD and are accompanied by increased extracerebral cerebrospinal fluid. This impaired brain growth persists after birth and throughout childhood to adolescence. Risk factors for impaired brain growth include reduced cerebral oxygen delivery in utero, longer time to surgery and increased hospital stay. There is increasing evidence that smaller total and regional brain volumes in this group are associated with adverse neurodevelopmental outcome. However, to date, few studies have assessed the association between early measures of cerebral volume and neurodevelopmental outcome in later childhood. Large prospective multicentre studies are required to better characterise the relationship between brain volume and growth, clinical risk factors and subsequent cognitive, motor, and behavioural impairments in this at-risk population

    Dorsal language stream anomalies in an inherited speech disorder

    No full text
    Speech disorders are highly prevalent in the preschool years, but frequently resolve. The neurobiological basis of the most persistent and severe form, apraxia of speech, remains elusive. Current neuroanatomical models of speech processing in adults propose two parallel streams. The dorsal stream is involved in sound to motor speech transformations, while the ventral stream supports sound/letter to meaning. Data-driven theories on the role of these streams during atypical speech and language development are lacking. Here we provide comprehensive behavioural and neuroimaging data on a large novel family where one parent and 11 children presented with features of childhood apraxia of speech (the same speech disorder associated with FOXP2 variants). The genetic cause of the disorder in this family remains to be identified. Importantly, in this family the speech disorder is not systematically associated with language or literacy impairment. Brain MRI scanning in seven children revealed large grey matter reductions over the left temporoparietal region, but not in the basal ganglia, relative to typically-developing matched peers. In addition, we detected white matter reductions in the arcuate fasciculus (dorsal language stream) bilaterally, but not in the inferior fronto-occipital fasciculus (ventral language stream) nor in primary motor pathways. Our findings identify disruption of the dorsal language stream as a novel neural phenotype of developmental speech disorders, distinct from that reported in speech disorders associated with FOXP2 variants. Overall, our data confirm the early role of this stream in auditory-to-articulation transformations

    Individual Assessment of Perioperative Brain Growth Trajectories in Infants With Congenital Heart Disease: Correlation With Clinical and Surgical Risk Factors

    No full text
    Background Infants with congenital heart disease (CHD) are at risk of neurodevelopmental impairments, which may be associated with impaired brain growth. We characterized how perioperative brain growth in infants with CHD deviates from typical trajectories and assessed the relationship between individualized perioperative brain growth and clinical risk factors. Methods and Results A total of 36 infants with CHD underwent preoperative and postoperative brain magnetic resonance imaging. Regional brain volumes were extracted. Normative volumetric development curves were generated using data from 219 healthy infants. Z‐scores, representing the degree of positive or negative deviation from the normative mean for age and sex, were calculated for regional brain volumes from each infant with CHD before and after surgery. The degree of Z‐score change was correlated with clinical risk factors. Perioperative growth was impaired across the brain, and it was associated with longer postoperative intensive care stay (false discovery rate P<0.05). Higher preoperative creatinine levels were associated with impaired brainstem, caudate nuclei, and right thalamus growth (all false discovery rate P=0.033). Older postnatal age at surgery was associated with impaired brainstem and right lentiform growth (both false discovery rate P=0.042). Longer cardiopulmonary bypass duration was associated with impaired brainstem and right caudate growth (false discovery rate P<0.027). Conclusions Infants with CHD can have impaired brain growth in the immediate postoperative period, the degree of which associates with postoperative intensive care duration. Brainstem growth appears particularly vulnerable to perioperative clinical course, whereas impaired deep gray matter growth was associated with multiple clinical risk factors, possibly reflecting vulnerability of these regions to short‐ and long‐term hypoxic injury

    Risk Factors for Perioperative Brain Lesions in Infants With Congenital Heart Disease: A European Collaboration

    No full text
    BACKGROUND: Infants with congenital heart disease are at risk of brain injury and impaired neurodevelopment. The aim was to investigate risk factors for perioperative brain lesions in infants with congenital heart disease. METHODS: Infants with transposition of the great arteries, single ventricle physiology, and left ventricular outflow tract and/or aortic arch obstruction undergoing cardiac surgery <6 weeks after birth from 3 European cohorts (Utrecht, Zurich, and London) were combined. Brain lesions were scored on preoperative (transposition of the great arteries N=104; single ventricle physiology N=35; and left ventricular outflow tract and/or aortic arch obstruction N=41) and postoperative (transposition of the great arteries N=88; single ventricle physiology N=28; and left ventricular outflow tract and/or aortic arch obstruction N=30) magnetic resonance imaging for risk factor analysis of arterial ischemic stroke, cerebral sinus venous thrombosis, and white matter injury. RESULTS: Preoperatively, induced vaginal delivery (odds ratio [OR], 2.23 [95% CI, 1.06-4.70]) was associated with white matter injury and balloon atrial septostomy increased the risk of white matter injury (OR, 2.51 [95% CI, 1.23-5.20]) and arterial ischemic stroke (OR, 4.49 [95% CI, 1.20-21.49]). Postoperatively, younger postnatal age at surgery (OR, 1.18 [95% CI, 1.05-1.33]) and selective cerebral perfusion, particularly at ≤20 °C (OR, 13.46 [95% CI, 3.58-67.10]), were associated with new arterial ischemic stroke. Single ventricle physiology was associated with new white matter injury (OR, 2.88 [95% CI, 1.20-6.95]) and transposition of the great arteries with new cerebral sinus venous thrombosis (OR, 13.47 [95% CI, 2.28-95.66]). Delayed sternal closure (OR, 3.47 [95% CI, 1.08-13.06]) and lower intraoperative temperatures (OR, 1.22 [95% CI, 1.07-1.36]) also increased the risk of new cerebral sinus venous thrombosis. CONCLUSIONS: Delivery planning and surgery timing may be modifiable risk factors that allow personalized treatment to minimize the risk of perioperative brain injury in severe congenital heart disease. Further research is needed to optimize cerebral perfusion techniques for neonatal surgery and to confirm the relationship between cerebral sinus venous thrombosis and perioperative risk factors

    Perioperative Brain Injury in Relation to Early Neurodevelopment Among Children with Severe Congenital Heart Disease:Results from a European Collaboration

    Get PDF
    Objective: To examine the relationship between perioperative brain injury and neurodevelopment during early childhood in patients with severe congenital heart disease (CHD). Study design: One hundred and seventy children with CHD and born at term who required cardiopulmonary bypass surgery in the first 6 weeks after birth were recruited from 3 European centers and underwent preoperative and postoperative brain MRIs. Uniform description of imaging findings was performed and an overall brain injury score was created, based on the sum of the worst preoperative or postoperative brain injury subscores. Motor and cognitive outcomes were assessed with the Bayley Scales of Infant and Toddler Development Third Edition at 12 to 30 months of age. The relationship between brain injury score and clinical outcome was assessed using multiple linear regression analysis, adjusting for CHD severity, length of hospital stay (LOS), socioeconomic status (SES), and age at follow-up. Results: Neither the overall brain injury score nor any of the brain injury subscores correlated with motor or cognitive outcome. The number of preoperative white matter lesions was significantly associated with gross motor outcome after correction for multiple testing (P = .013, β = −0.50). SES was independently associated with cognitive outcome (P &lt; .001, β = 0.26), and LOS with motor outcome (P &lt; .001, β = −0.35). Conclusion: Preoperative white matter lesions appear to be the most predictive MRI marker for adverse early childhood gross motor outcome in this large European cohort of infants with severe CHD. LOS as a marker of disease severity, and SES influence outcome and future intervention trials need to address these risk factors.</p
    corecore