6 research outputs found

    Enhancing PFI Prediction with GDS-MIL: A Graph-based Dual Stream MIL Approach

    Get PDF
    Whole-Slide Images (WSI) are emerging as a promising resource for studying biological tissues, demonstrating a great potential in aiding cancer diagnosis and improving patient treatment. However, the manual pixel-level annotation of WSIs is extremely time-consuming and practically unfeasible in real-world scenarios. Multi-Instance Learning (MIL) have gained attention as a weakly supervised approach able to address lack of annotation tasks. MIL models aggregate patches (e.g., cropping of a WSI) into bag-level representations (e.g., WSI label), but neglect spatial information of the WSIs, crucial for histological analysis. In the High-Grade Serous Ovarian Cancer (HGSOC) context, spatial information is essential to predict a prognosis indicator (the Platinum-Free Interval, PFI) from WSIs. Such a prediction would bring highly valuable insights both for patient treatment and prognosis of chemotherapy resistance. Indeed, NeoAdjuvant ChemoTherapy (NACT) induces changes in tumor tissue morphology and composition, making the prediction of PFI from WSIs extremely challenging. In this paper, we propose GDS-MIL, a method that integrates a state-of-the-art MIL model with a Graph ATtention layer (GAT in short) to inject a local context into each instance before MIL aggregation. Our approach achieves a significant improvement in accuracy on the ``Ome18'' PFI dataset. In summary, this paper presents a novel solution for enhancing PFI prediction in HGSOC, with the potential of significantly improving treatment decisions and patient outcomes

    A Graph-Based Multi-Scale Approach with Knowledge Distillation for WSI Classification

    No full text
    The usage of Multi Instance Learning (MIL) for classifying Whole Slide Images (WSIs) has recently increased. Due to their gigapixel size, the pixel-level annotation of such data is extremely expensive and time-consuming, practically unfeasible. For this reason, multiple automatic approaches have been raised in the last years to support clinical practice and diagnosis. Unfortunately, most state-of-the-art proposals apply attention mechanisms without considering the spatial instance correlation and usually work on a single-scale resolution. To leverage the full potential of pyramidal structured WSI, we propose a graph-based multi-scale MIL approach, DAS-MIL. Our model comprises three modules: i) a self-supervised feature extractor, ii) a graph-based architecture that precedes the MIL mechanism and aims at creating a more contextualized representation of the WSI structure by considering the mutual (spatial) instance correlation both inter and intra-scale. Finally, iii) a (self) distillation loss between resolutions is introduced to compensate for their informative gap and significantly improve the final prediction. The effectiveness of the proposed framework is demonstrated on two well-known datasets, where we outperform SOTA on WSI classification, gaining a +2.7% AUC and +3.7% accuracy on the popular Camelyon16 benchmark

    DAS-MIL: Distilling Across Scales for MILClassification of Histological WSIs

    No full text
    The adoption of Multi-Instance Learning (MIL) for classifying Whole-Slide Images (WSIs) has increased in recent years. Indeed, pixel-level annotation of gigapixel WSI is mostly unfeasible and time-consuming in practice. For this reason, MIL approaches have been profitably integrated with the most recent deep-learning solutions for WSI classification to support clinical practice and diagnosis. Nevertheless, the majority of such approaches overlook the multi-scale nature of the WSIs; the few existing hierarchical MIL proposals simply flatten the multi-scale representations by concatenation or summation of features vectors, neglecting the spatial structure of the WSI. Our work aims to unleash the full potential of pyramidal structured WSI; to do so, we propose a graph-based multi-scale MIL approach, termed DAS-MIL, that exploits message passing to let information flows across multiple scales. By means of a knowledge distillation schema, the alignment between the latent space representation at different resolutions is encouraged while preserving the diversity in the informative content. The effectiveness of the proposed framework is demonstrated on two well-known datasets, where we outperform SOTA on WSI classification, gaining a +1.9% AUC and +3.3¬curacy on the popular Camelyon16 benchmark
    corecore