33 research outputs found
Bats' Conquest of a Formidable Foraging Niche: The Myriads of Nocturnally Migrating Songbirds
Along food chains, i.e., at different trophic levels, the most abundant taxa often represent exceptional food reservoirs, and are hence the main target of consumers and predators. The capacity of an individual consumer to opportunistically switch towards an abundant food source, for instance, a prey that suddenly becomes available in its environment, may offer such strong selective advantages that ecological innovations may appear and spread rapidly. New predator-prey relationships are likely to evolve even faster when a diet switch involves the exploitation of an unsaturated resource for which few or no other species compete. Using stable isotopes of carbon and nitrogen as dietary tracers, we provide here strong support to the controversial hypothesis that the giant noctule bat Nyctalus lasiopterus feeds on the wing upon the multitude of flying passerines during their nocturnal migratory journeys, a resource which, while showing a predictable distribution in space and time, is only seasonally available. So far, no predator had been reported to exploit this extraordinarily diverse and abundant food reservoir represented by nocturnally migrating passerines
Bats in the anthropogenic matrix: Challenges and opportunities for the conservation of chiroptera and their ecosystem services in agricultural landscapes
Intensification in land-use and farming practices has had largely negative effects on bats, leading to population declines and concomitant losses of ecosystem services. Current trends in land-use change suggest that agricultural areas will further expand, while production systems may either experience further intensification
(particularly in developing nations) or become more environmentally friendly (especially in Europe). In this chapter, we review the existing literature on how agricultural management affects the bat assemblages and the behavior of individual bat species, as well as the literature on provision of ecosystem services by bats (pest insect suppression and pollination) in agricultural systems. Bats show highly variable responses to habitat conversion, with no significant change in species
richness or measures of activity or abundance. In contrast, intensification within agricultural systems (i.e., increased agrochemical inputs, reduction of natural structuring elements such as hedges, woods, and marshes) had more consistently negative
effects on abundance and species richness. Agroforestry systems appear to mitigate negative consequences of habitat conversion and intensification, often having higher abundances and activity levels than natural areas. Across biomes, bats play key roles in limiting populations of arthropods by consuming various agricultural pests. In tropical areas, bats are key pollinators of several commercial fruit species. However, these substantial benefits may go unrecognized by farmers, who sometimes associate bats with ecosystem disservices such as crop raiding. Given the importance of bats for global food production, future agricultural management should focus on “wildlife-friendly” farming practices that allow more bats to exploit and persist
in the anthropogenic matrix so as to enhance provision of ecosystem services. Pressing research topics include (1) a better understanding of how local-level versus
landscape-level management practices interact to structure bat assemblages,
(2) the effects of new pesticide classes and GM crops on bat populations, and (3) how increased documentation and valuation of the ecosystem services provided by bats could improve attitudes of producers toward their conservation
In the footsteps of city foxes: evidence for a rise of urban badger populations in Switzerland
Single observations of badgers in urban areas have been interpreted as relicts of formerly rural populations that have merely survived urban encroachment. However, decades after the rise of urban fox populations in continental Europe, there is evidence from Switzerland which suggests that badgers may be following a similar trend. We present long-term traffic casualty data, a comparison over time of camera trap studies, and incidental observations collected in a Swiss citizen science project which indicate both an increase of badgers at the national scale as well as a range expansion into urban areas. Their rather delayed and slow increase, compared to foxes, might be based on slower reproduction and less flexible behavioural adaptations. Our data, however, suggest that badgers are recovering delayed from a population depression following the rabies epizootic of the 1960s and 70s and may be starting to expand their range through the colonisation of urban habitats, similar as foxes did during the 20th century