33 research outputs found
An airway epithelial IL-17A response signature identifies a steroid-unresponsive COPD patient subgroup
BACKGROUND. Chronic obstructive pulmonary disease (COPD) is a heterogeneous smoking-related disease characterized by airway obstruction and inflammation. This inflammation may persist even after smoking cessation and responds variably to corticosteroids. Personalizing treatment to biologically similar "molecular phenotypes" may improve therapeutic efficacy in a COPD. IL-17A is involved in neutrophilic inflammation and corticosteroid resistance, and thus may be particularly important in a COPD molecular phenotype. METHODS. We generated a gene expression signature of IL-17A response in bronchial airway epithelial brushings from smokers with and without COPD (n = 238) , and validated it using data from 2 randomized trials of IL-17 blockade in psoriasis. This IL-17 signature was related to clinical and pathologic characteristics in 2 additional human studies of COPD: (a) SPIROMICS (n = 47), which included former and current smokers with COPD, and (b) GLUCOLD (n = 79), in which COPD participants were randomized to placebo or corticosteroids. RESULTS. The IL-17 signature was associated with an inflammatory profile characteristic of an IL-17 response, including increased airway neutrophils and macrophages. In SPIROMICS the signature was associated with increased airway obstruction and functional small airways disease on quantitative chest CT. In GLUCOLD the signature was associated with decreased response to corticosteroids, irrespective of airway eosinophilic or type 2 inflammation. CONCLUSION. These data suggest that a gene signature of IL-17 airway epithelial response distinguishes a biologically, radiographically, and clinically distinct COPD subgroup that may benefit from personalized therapy
Airway Mucus and Asthma: The Role of MUC5AC and MUC5B
Asthma is characterized by mucus abnormalities. Airway epithelial hyperplasia and metaplasia result in changes in stored and secreted mucin and the production of a pathologic mucus gel. Mucus transport is impaired, culminating in mucus plugging and airway obstruction—a major cause of morbidity in asthma. The polymeric mucins MUC5AC and MUC5B are integral components of airway mucus. MUC5AC and MUC5B gene expression is altered in asthma, and recent work sheds light on their contribution to asthma pathogenesis. Herein, we review our current understanding of the role of MUC5AC and MUC5B in mucus dysfunction in asthma
Epithelial tethering of MUC5AC-rich mucus impairs mucociliary transport in asthma
The development of pathologic mucus, which is not readily cleared from the airways, is an important contributor to the morbidity and mortality associated with asthma. It is not clear how the major airway mucins MUC5AC and MUC5B are organized within the mucus gel or how this gel contributes to airway obstruction in asthma. Here, we demonstrated that mucus plugs from individuals with fatal asthma are heterogeneous gels with distinct MUC5AC- and MUC5B-containing domains. Stimulation of cultured human bronchial epithelial cells with IL-13, a key mediator in asthma, induced the formation of heterogeneous mucus gels and dramatically impaired mucociliary transport. Impaired transport was not associated with defects in ciliary function but instead was related to tethering of MUC5AC-containing mucus gel domains to mucus-producing cells in the epithelium. Replacement of tethered mucus with untethered mucus restored mucociliary transport. Together, our results indicate that tethering of MUC5AC-containing domains to the epithelium causes mucostasis and likely represents a major cause of mucus plugging in asthma
The Endoplasmic Reticulum Resident Protein AGR3. Required for Regulation of Ciliary Beat Frequency in the Airway
Protein disulfide isomerase (PDI) family members regulate protein folding and calcium homeostasis in the endoplasmic reticulum (ER). The PDI family member anterior gradient (AGR) 3 is expressed in the airway, but the localization, regulation, and function of AGR3 are poorly understood. Here we report that AGR3, unlike its closest homolog AGR2, is restricted to ciliated cells in the airway epithelium and is not induced by ER stress. Mice lacking AGR3 are viable and develop ciliated cells with normal-appearing cilia. However, ciliary beat frequency was lower in airways from AGR3-deficient mice compared with control mice (20% lower in the absence of stimulation and 35% lower after ATP stimulation). AGR3 deficiency had no detectable effects on ciliary beat frequency (CBF) when airways were perfused with a calcium-free solution, suggesting that AGR3 is required for calcium-mediated regulation of ciliary function. Decreased CBF was associated with impaired mucociliary clearance in AGR3-deficient airways. We conclude that AGR3 is a specialized member of the PDI family that plays an unexpected role in the regulation of CBF and mucociliary clearance in the airway