420 research outputs found

    Duality and the vibrational modes of a Cooper-pair Wigner crystal

    Full text link
    When quantum fluctuations in the phase of the superconducting order parameter destroy the off-diagonal long range order, duality arguments predict the formation of a Cooper pair crystal. This effect is thought to be responsible for the static checkerboard patterns observed recently in various underdoped cuprate superconductors by means of scanning tunneling spectroscopy. Breaking of the translational symmetry in such a Cooper pair Wigner crystal may, under certain conditions, lead to the emergence of low lying transverse vibrational modes which could then contribute to thermodynamic and transport properties at low temperatures. We investigate these vibrational modes using a continuum version of the standard vortex-boson duality, calculate the speed of sound in the Cooper pair Wigner crystal and deduce the associated specific heat and thermal conductivity. We then suggest that these modes could be responsible for the mysterious bosonic contribution to the thermal conductivity recently observed in strongly underdoped ultraclean single crystals of YBCO tuned across the superconductor-insulator transition.Comment: 14 pages; 3 figures; corrected the sample size value; version 3 to appear in PR

    Predators reduce extinction risk in noisy metapopulations

    Get PDF
    Background Spatial structure across fragmented landscapes can enhance regional population persistence by promoting local “rescue effects.” In small, vulnerable populations, where chance or random events between individuals may have disproportionately large effects on species interactions, such local processes are particularly important. However, existing theory often only describes the dynamics of metapopulations at regional scales, neglecting the role of multispecies population dynamics within habitat patches. Findings By coupling analysis across spatial scales we quantified the interaction between local scale population regulation, regional dispersal and noise processes in the dynamics of experimental host-parasitoid metapopulations. We find that increasing community complexity increases negative correlation between local population dynamics. A potential mechanism underpinning this finding was explored using a simple population dynamic model. Conclusions Our results suggest a paradox: parasitism, whilst clearly damaging to hosts at the individual level, reduces extinction risk at the population level

    Crystalline Order on a Sphere and the Generalized Thomson Problem

    Get PDF
    We attack generalized Thomson problems with a continuum formalism which exploits a universal long range interaction between defects depending on the Young modulus of the underlying lattice. Our predictions for the ground state energy agree with simulations of long range power law interactions of the form 1/r^{gamma} (0 < gamma < 2) to four significant digits. The regime of grain boundaries is studied in the context of tilted crystalline order and the generality of our approach is illustrated with new results for square tilings on the sphere.Comment: 4 pages, 5 eps figures Fig. 2 revised, improved Fig. 3, reference typo fixe

    Overcoming the barriers to implementing urban road user charging schemes

    Get PDF
    Urban road user charging offers the potential to achieve significant improvements in urban transport, but is notoriously difficult to implement. Cities need guidance on the range of factors to be considered in planning and implementing such schemes. This paper summarises the results of a 3 year programme which has collated evidence on the issues of most concern to cities. A state of the art report has provided evidence on 14 themes, ranging from objectives and design to implementation and evaluation. A set of 16 case studies has reviewed experience in design and implementation across Europe. The paper summarises their findings, provides references to more detailed information, presents the resulting policy recommendations to European, national and local government, and outlines the areas in which further research is needed

    Liquid Crystal Phases of Quantum Hall Systems

    Full text link
    Mean-field calculations for the two dimensional electron gas (2DEG) in a large magnetic field with a partially filled Landau level with index N≄2N\geq 2 consistently yield ``stripe-ordered'' charge-density wave ground-states, for much the same reason that frustrated phase separation leads to stripe ordered states in doped Mott insulators. We have studied the effects of quantum and thermal fluctuations about such a state and show that they can lead to a set of electronic liquid crystalline states, particularly a stripe-nematic phase which is stable at T>0T>0. Recent measurements of the longitudinal resistivity of a set of quantum Hall devices have revealed that these systems spontaneously develop, at low temepratures, a very large anisotropy. We interpret these experiments as evidence for a stripe nematic phase, and propose a general phase diagram for this system.Comment: 9 pages, 3 figure

    THE ISOTOPIC SIGNATURE OF THE MINERALIZING FLUID OF THE LAVRION CARBONATE-REPLACEMENT PB-ZN-AG DISTRICT

    Get PDF
    The Pb-Zn-Ag carbonate-replacement deposits in the Lavrion district are genetically related to a 7- 10 Ma-old granodiorite, felsic dikes and sills. These deposits are hosted in the Upper and Lower marble and schists of the Cyclades Blueschist unit and occur along the major Legraina detachment fault. Carbonate-replacement orebodies occur as “mantos” and veins, dominated by base metal sulfides and Ag, Bi, Sn, Sb, As, and Pb sulfosalts. Calculated carbon and oxygen isotope compositions of the hydrothermal fluid range from ÎŽ13CCO2 of -13.7 to 0.8 per mil and ÎŽ18OH2O of 4.2 to 27.4 per mil, at 400Âș, 350Âș, 320Âș, 300Âș, 250Âș and 200ÂșC. These isotopic compositions reveal water-torock ratios ranging from 4.8 to 52.6%, which reflect intense interaction of the ore fluid with the host rock in a water-dominated, transitional closed to open hydrothermal system. The range of ÎŽ34SH2S for sulfides in the deposits were from -8.5 to 6.8 per mil, for similar temperatures, whereas for barite-fluorite veins from ÎŽ34SH2S of -43.6 to -16.4 per mil, at 200Âș, 150Âș and 100ÂșC. This range implies that there was contribution from a magmatic sulfur component exsolved from the Plaka pluton, as well as contribution from a metasedimentary component. Based on the isotopic signature of sulfur for barite, the ranges from -6.7 to -7.6, comprising an increase in the fluid influx. Isotopic temperatures based on pyrite-galena and sphalerite-pyrite pairs revealed at least three major events of carbonate-replacement ore deposition, (i) at ~ 360Âș, (ii) 320Âș-280Âșand (iii) 260Âș-200ÂșC

    The "Artificial Mathematician" Objection: Exploring the (Im)possibility of Automating Mathematical Understanding

    Get PDF
    Reuben Hersh confided to us that, about forty years ago, the late Paul Cohen predicted to him that at some unspecified point in the future, mathematicians would be replaced by computers. Rather than focus on computers replacing mathematicians, however, our aim is to consider the (im)possibility of human mathematicians being joined by “artificial mathematicians” in the proving practice—not just as a method of inquiry but as a fellow inquirer

    Application of the density matrix renormalization group method to finite temperatures and two-dimensional systems

    Full text link
    The density matrix renormalization group (DMRG) method and its applications to finite temperatures and two-dimensional systems are reviewed. The basic idea of the original DMRG method, which allows precise study of the ground state properties and low-energy excitations, is presented for models which include long-range interactions. The DMRG scheme is then applied to the diagonalization of the quantum transfer matrix for one-dimensional systems, and a reliable algorithm at finite temperatures is formulated. Dynamic correlation functions at finite temperatures are calculated from the eigenvectors of the quantum transfer matrix with analytical continuation to the real frequency axis. An application of the DMRG method to two-dimensional quantum systems in a magnetic field is demonstrated and reliable results for quantum Hall systems are presented.Comment: 33 pages, 18 figures; corrected Eq.(117
    • 

    corecore