467 research outputs found
Closed timelike curves in general relativity
Many solutions of Einstein's field equations contain closed timelike curves
(CTC). Some of these solutions refer to ordinary materials in situations which
might occur in the laboratory, or in astrophysics. It is argued that, in
default of a reasonable interpretation of CTC, general relativity does not give
a satisfactory account of all phenomena within its terms of reference.Comment: 3 pages, PACS: 042
Structure formation in the Lemaitre-Tolman model
Structure formation within the Lemaitre-Tolman model is investigated in a
general manner. We seek models such that the initial density perturbation
within a homogeneous background has a smaller mass than the structure into
which it will develop, and the perturbation then accretes more mass during
evolution. This is a generalisation of the approach taken by Bonnor in 1956. It
is proved that any two spherically symmetric density profiles specified on any
two constant time slices can be joined by a Lemaitre-Tolman evolution, and
exact implicit formulae for the arbitrary functions that determine the
resulting L-T model are obtained. Examples of the process are investigated
numerically.Comment: LaTeX 2e plus 14 .eps & .ps figure files. 33 pages including figures.
Minor revisions of text and data make it more precise and consistent.
Currently scheduled for Phys Rev D vol 64, December 15 issu
Regular and quasi black hole solutions for spherically symmetric charged dust distributions in the Einstein-Maxwell theory
Static spherically symmetric distributions of electrically counterpoised dust
(ECD) are used to construct solutions to Einstein-Maxwell equations in
Majumdar--Papapetrou formalism. Unexpected bifurcating behaviour of solutions
with regard to source strength is found for localized, as well as for the
delta-function ECD distributions. Unified treatment of general ECD
distributions is accomplished and it is shown that for certain source strengths
one class of regular solutions approaches Minkowski spacetime, while the other
comes arbitrarily close to black hole solutions.Comment: LaTeX (IOP style) 17 pages, 10 figure
Electromagnetic radiation produces frame dragging
It is shown that for a generic electrovacuum spacetime, electromagnetic
radiation produces vorticity of worldlines of observers in a Bondi--Sachs
frame. Such an effect (and the ensuing gyroscope precession with respect to the
lattice) which is a reminiscence of generation of vorticity by gravitational
radiation, may be linked to the nonvanishing of components of the Poynting and
the super--Poynting vectors on the planes othogonal to the vorticity vector.
The possible observational relevance of such an effect is commented.Comment: 8 pages RevTex 4-1; updated version to appear in Physical Review
Colliding axisymmetric pp-waves
An exact solution is found describing the collision of axisymmetric pp-waves
with M=0. They are impulsive in character and their coordinate singularities
become point curvature singularities at the boundaries of the interaction
region. The solution is conformally flat. Concrete examples are given,
involving an ultrarelativistic black hole against a burst of pure radiation or
two colliding beam- like waves.Comment: 6 pages, REVTeX, some misprints are correcte
You Can't Get Through Szekeres Wormholes - or - Regularity, Topology and Causality in Quasi-Spherical Szekeres Models
The spherically symmetric dust model of Lemaitre-Tolman can describe
wormholes, but the causal communication between the two asymptotic regions
through the neck is even less than in the vacuum
(Schwarzschild-Kruskal-Szekeres) case. We investigate the anisotropic
generalisation of the wormhole topology in the Szekeres model. The function
E(r, p, q) describes the deviation from spherical symmetry if \partial_r E \neq
0, but this requires the mass to be increasing with radius, \partial_r M > 0,
i.e. non-zero density. We investigate the geometrical relations between the
mass dipole and the locii of apparent horizon and of shell-crossings. We
present the various conditions that ensure physically reasonable
quasi-spherical models, including a regular origin, regular maxima and minima
in the spatial sections, and the absence of shell-crossings. We show that
physically reasonable values of \partial_r E \neq 0 cannot compensate for the
effects of \partial_r M > 0 in any direction, so that communication through the
neck is still worse than the vacuum.
We also show that a handle topology cannot be created by identifying
hypersufaces in the two asymptotic regions on either side of a wormhole, unless
a surface layer is allowed at the junction. This impossibility includes the
Schwarzschild-Kruskal-Szekeres case.Comment: zip file with LaTeX text + 6 figures (.eps & .ps). 47 pages. Second
replacement corrects some minor errors and typos. (First replacement prints
better on US letter size paper.
The gravitational wave rocket
Einstein's equations admit solutions corresponding to photon rockets. In
these a massive particle recoils because of the anisotropic emission of
photons. In this paper we ask whether rocket motion can be powered only by the
emission of gravitational waves. We use the double series approximation method
and show that this is possible. A loss of mass and gain in momentum arise in
the second approximation because of the emission of quadrupole and octupole
waves.Comment: 10 pages LaTe
Evolution of the density contrast in inhomogeneous dust models
With the help of families of density contrast indicators, we study the
tendency of gravitational systems to become increasingly lumpy with time.
Depending upon their domain of definition, these indicators could be local or
global. We make a comparative study of these indicators in the context of
inhomogeneous cosmological models of Lemaitre--Tolman and Szekeres. In
particular, we look at the temporal asymptotic behaviour of these indicators
and ask under what conditions, and for which class of models, they evolve
monotonically in time. We find that for the case of ever-expanding models,
there is a larger class of indicators that grow monotonically with time,
whereas the corresponding class for the recollapsing models is more restricted.
Nevertheless, in the absence of decaying modes, indicators exist which grow
monotonically with time for both ever-expanding and recollapsing models
simultaneously. On the other hand, no such indicators may found which grow
monotonically if the decaying modes are allowed to exist. We also find the
conditions for these indicators to be non-divergent at the initial singularity
in both models. Our results can be of potential relevance for understanding
structure formation in inhomogeneous settings and in debates regarding
gravitational entropy and arrow of time. In particular, the spatial dependence
of turning points in inhomogeneous cosmologies may result in multiple density
contrast arrows in recollapsing models over certain epochs. We also find that
different notions of asymptotic homogenisation may be deduced, depending upon
the density contrast indicators used.Comment: 22 pages, 1 figure. To be published in Classical and Quantum Gravit
Classical gravitational spin-spin interaction
I obtain an exact, axially symmetric, stationary solution of Einstein's
equations for two massless spinning particles. The term representing the
spin-spin interaction agrees with recently published approximate work. The
spin-spin force appears to be proportional to the inverse fourth power of the
coordinate distance between the particles.Comment: six pages, no figures, journal ref:accepted for Classical and Quantum
Gravit
Null limits of generalised Bonnor-Swaminarayan solutions
The Bonnor-Swaminarayan solutions are boost-rotation symmetric space-times
which describe the motion of pairs of accelerating particles which are possibly
connected to strings (struts). In an explicit and unified form we present a
generalised class of such solutions with a few new observations. We then
investigate the possible limits in which the accelerations become unbounded.
The resulting space-times represent spherical impulsive gravitational waves
with snapping or expanding cosmic strings. We also obtain an exact solution for
a snapping string of finite length.Comment: 13 pages LaTeX 2e. To appear in Gen. Rel. Gra
- …