5 research outputs found

    Quality Control Autophagy Degrades Soluble ERAD-Resistant Conformers of the Misfolded Membrane Protein GnRHR

    Get PDF
    Molecular chaperones triage misfolded proteins via action as substrate selectors for quality control (QC) machines that fold or degrade clients. Herein, the endoplasmic reticulum (ER) associated Hsp40 JB12 is reported to participate in partitioning mutant conformers of GnRHR, a G-protein coupled receptor, between ER-associated degradation (ERAD) and a novel ERQC-autophagy pathway for membrane proteins. ERQC-autophagy degrades E90K-GnRHR because pools of its partially folded and detergent soluble degradation intermediates are resistant to ERAD. S168R-GnRHR is globally misfolded and disposed of via ERAD, but inhibition of p97, the protein retrotranslocation motor, shunts S168R-GnRHR from ERAD to ERQC autophagy. Partially folded and grossly misfolded forms of GnRHR associate with JB12 and Hsp70. Elevation of JB12 promotes ERAD of S168R-GnRHR, with E90K-GnRHR being resistant. E90K-GnRHR elicits association of the Vps34 autophagy initiation complex with JB12. Interaction between ERassociated Hsp40s and the Vps34 complex permits the selective degradation of ERAD-resistant membrane proteins via ERQC-autophagy

    Replication-Associated Recombinational Repair: Lessons from Budding Yeast

    No full text
    Recombinational repair processes multiple types of DNA lesions. Though best understood in the repair of DNA breaks, recombinational repair is intimately linked to other situations encountered during replication. As DNA strands are decorated with many types of blocks that impede the replication machinery, a great number of genomic regions cannot be duplicated without the help of recombinational repair. This replication-associated recombinational repair employs both the core recombination proteins used for DNA break repair and the specialized factors that couple replication with repair. Studies from multiple organisms have provided insights into the roles of these specialized factors, with the findings in budding yeast being advanced through use of powerful genetics and methods for detecting DNA replication and repair intermediates. In this review, we summarize recent progress made in this organism, ranging from our understanding of the classical template switch mechanisms to gap filling and replication fork regression pathways. As many of the protein factors and biological principles uncovered in budding yeast are conserved in higher eukaryotes, these findings are crucial for stimulating studies in more complex organisms

    Smc5/6 Mediated Sumoylation of the Sgs1-Top3-Rmi1 Complex Promotes Removal of Recombination Intermediates

    Get PDF
    SummaryTimely removal of DNA recombination intermediates is critical for genome stability. The DNA helicase-topoisomerase complex, Sgs1-Top3-Rmi1 (STR), is the major pathway for processing these intermediates to generate conservative products. However, the mechanisms that promote STR-mediated functions remain to be defined. Here we show that Sgs1 binds to poly-SUMO chains and associates with the Smc5/6 SUMO E3 complex in yeast. Moreover, these interactions contribute to the sumoylation of Sgs1, Top3, and Rmi1 upon the generation of recombination structures. We show that reduced STR sumoylation leads to accumulation of recombination structures, and impaired growth in conditions when these structures arise frequently, highlighting the importance of STR sumoylation. Mechanistically, sumoylation promotes STR inter-subunit interactions and accumulation at DNA repair centers. These findings expand the roles of sumoylation and Smc5/6 in genome maintenance by demonstrating that they foster STR functions in the removal of recombination intermediates
    corecore