214 research outputs found
Electrohydraulic Forming of Light Weight Automotive Panels
This paper describes the results of development of the electrohydraulic forming (EHF)
process as a near-net shape automotive panel manufacturing technology. EHF is an
electro-dynamic process based upon high-voltage discharge of capacitors between two
electrodes positioned in a fluid-filled chamber. This process is extremely fast, uses lowercost
single-sided tooling, and potentially derives significantly increased formability from
many sheet metal materials due to the elevated strain rate. Major results obtained during
this study include: developing numerical model of the EHF; demonstrating increased
formability for high-strength materials and other technical benefits of using EHF;
developing the electrode design suitable for high volume production conditions;
understanding the limitations on loads on the die in pulsed forming conditions; developing
an automated fully computer controlled and robust EHF cell; demonstration of
electrohydraulic springback calibration and electrohydraulic trimming of stamped panels;
full scale demonstration of a hybrid conventional and EHF forming process for automotive
dash panel
Analysis of Contact Stresses in High Speed Sheet Metal Forming Processes
In high speed metal forming, determination of contact stresses applied to forming dies is
necessary in order to identify the requirements to the die material. Contact stresses
greatly control the die design due to their effects on die durability. Very high contact
stresses and fracture under impulsive loading have been reported in literature on contact
type of high speed forming. In pulsed forming operations using electro-hydraulic forming
(EHF), a work piece is often accelerated into the die cavity of a desired shape resulting in
a substantial impact pressure on the die. Contact algorithm and mesh size play an
essential role in providing accurate results in such high speed processes. Using the soft
contact model with an appropriate control of the penetration value provided stable and
consistent contact stresses
The GABA Transaminase, ABAT, Is Essential for Mitochondrial Nucleoside Metabolism
SummaryABAT is a key enzyme responsible for catabolism of principal inhibitory neurotransmitter γ-aminobutyric acid (GABA). We report an essential role for ABAT in a seemingly unrelated pathway, mitochondrial nucleoside salvage, and demonstrate that mutations in this enzyme cause an autosomal recessive neurometabolic disorder and mtDNA depletion syndrome (MDS). We describe a family with encephalomyopathic MDS caused by a homozygous missense mutation in ABAT that results in elevated GABA in subjects’ brains as well as decreased mtDNA levels in subjects’ fibroblasts. Nucleoside rescue and co-IP experiments pinpoint that ABAT functions in the mitochondrial nucleoside salvage pathway to facilitate conversion of dNDPs to dNTPs. Pharmacological inhibition of ABAT through the irreversible inhibitor Vigabatrin caused depletion of mtDNA in photoreceptor cells that was prevented through addition of dNTPs in cell culture media. This work reveals ABAT as a connection between GABA metabolism and nucleoside metabolism and defines a neurometabolic disorder that includes MDS
European admixture on the Micronesian island of Kosrae: lessons from complete genetic information
The architecture of natural variation present in a contemporary population is a result of multiple population genetic forces, including population bottleneck and expansion, selection, drift, and admixture. We seek to untangle the contribution of admixture to genetic diversity on the Micronesian island of Kosrae. Toward this goal, we used a complete genetic approach by combining a dense genome-wide map of 100 000 single-nucleotide polymorphisms (SNPs) with data from uniparental markers from the mitochondrial genome and the nonrecombining portion of the Y chromosome. These markers were typed in ∼3200 individuals from Kosrae, representing 80% of the adult population of the island. We developed novel software that uses SNP data to delineate ancestry for individual segments of the genome. Through this analysis, we determined that 39% of Kosraens have some European ancestry. However, the vast majority of admixed individuals (77%) have European alleles spanning less than 10% of their genomes. Data from uniparental markers show most of this admixture to be male, introduced in the late nineteenth century. Furthermore, pedigree analysis shows that the majority of European admixture on Kosrae is because of the contribution of one individual. This approach shows the benefit of combining information from autosomal and uniparental polymorphisms and provides new methodology for determining ancestry in a population
Fatigue behaviour of SiC p -reinforced aluminium composites in the very high cycle regime using ultrasonic fatigue
The fatigue behaviour of a 2009/SiC/15p-T4 DRA composite has been examined in the very high cycle fatigue (VHCF) regime where 10 7 ≤ N f ≤ 10 9 cycles. Ultrasonic fatigue was used to achieve the very high cycle counts. Careful processing yielded a composite with a very homogeneous particle distribution with minimal clustering. Fatigue crack initiation was observed almost exclusively at AlCuFe inclusions with no crack initiation observed at SiC particle clusters. Fatigue lives at a given stress level exhibited minimal scatter and subsurface crack initiation was observed in all cases. This behaviour is consistent with the presence of a low number density of critical inclusions that are responsible for crack initiation very early in fatigue life.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73177/1/j.1460-2695.2006.00998.x.pd
Conceptualising the technical relationship of animal disease surveillance to intervention and mitigation as a basis for economic analysis
<p>Abstract</p> <p>Background</p> <p>Surveillance and intervention are resource-using activities of strategies to mitigate the unwanted effects of disease. Resources are scarce, and allocating them to disease mitigation instead of other uses necessarily involves the loss of alternative sources of benefit to people. For society to obtain the maximum benefits from using resources, the gains from disease mitigation must be compared to the resource costs, guiding decisions made with the objective of achieving the optimal net outcome.</p> <p>Discussion</p> <p>Economics provides criteria to guide decisions aimed at optimising the net benefits from the use of scarce resources. Assessing the benefits of disease mitigation is no exception. However, the technical complexity of mitigation means that economic evaluation is not straightforward because of the technical relationship of surveillance to intervention. We argue that analysis of the magnitudes and distribution of benefits and costs for any given strategy, and hence the outcome in net terms, requires that mitigation is considered in three conceptually distinct stages. In Stage I, 'sustainment', the mitigation objective is to sustain a free or acceptable status by preventing an increase of a pathogen or eliminating it when it occurs. The role of surveillance is to document that the pathogen remains below a defined threshold, giving early warning of an increase in incidence or other significant changes in risk, and enabling early response. If a pathogen is not contained, the situation needs to be assessed as Stage II, 'investigation'. Here, surveillance obtains critical epidemiological information to decide on the appropriate intervention strategy to reduce or eradicate a disease in Stage III, 'implementation'. Stage III surveillance informs the choice, timing, and scale of interventions and documents the progress of interventions directed at prevalence reduction in the population.</p> <p>Summary</p> <p>This article originates from a research project to develop a conceptual framework and practical tool for the economic evaluation of surveillance. Exploring the technical relationship between mitigation as a source of economic value and surveillance and intervention as sources of economic cost is crucial. A framework linking the key technical relationships is proposed. Three conceptually distinct stages of mitigation are identified. Avian influenza, salmonella, and foot and mouth disease are presented to illustrate the framework.</p
- …