571 research outputs found

    Kinetic Scale Density Fluctuations in the Solar Wind

    Full text link
    We motivate the importance of studying kinetic scale turbulence for understanding the macroscopic properties of the heliosphere, such as the heating of the solar wind. We then discuss the technique by which kinetic scale density fluctuations can be measured using the spacecraft potential, including a calculation of the timescale for the spacecraft potential to react to the density changes. Finally, we compare the shape of the density spectrum at ion scales to theoretical predictions based on a cascade model for kinetic turbulence. We conclude that the shape of the spectrum, including the ion scale flattening, can be captured by the sum of passive density fluctuations at large scales and kinetic Alfven wave turbulence at small scales

    Survey of the ULF wave Poynting vector near the Earth's magnetic equatorial plane

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/101878/1/pdfexplain.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/101878/2/jgra50591.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/101878/3/pdfexplain.tx

    Variations in Stellar Clustering with Environment: Dispersed Star Formation and the Origin of Faint Fuzzies

    Full text link
    The observed increase in star formation efficiency with average cloud density, from several percent in whole giant molecular clouds to ~30 or more in cluster-forming cores, can be understood as the result of hierarchical cloud structure if there is a characteristic density as which individual stars become well defined. Also in this case, the efficiency of star formation increases with the dispersion of the density probability distribution function (pdf). Models with log-normal pdf's illustrate these effects. The difference between star formation in bound clusters and star formation in loose groupings is attributed to a difference in cloud pressure, with higher pressures forming more tightly bound clusters. This correlation accounts for the observed increase in clustering fraction with star formation rate and with the observation of Scaled OB Associations in low pressure environments. ``Faint fuzzie'' star clusters, which are bound but have low densities, can form in regions with high Mach numbers and low background tidal forces. The proposal by Burkert, Brodie & Larsen (2005) that faint fuzzies form at large radii in galactic collisional rings, satisfies these constraints.Comment: 14 pages, 2 figures, ApJ, 672, January 10th 200

    Mid-infrared interferometry of the massive young stellar object NGC3603 - IRS 9A

    Full text link
    We present observations and models for one of these MYSO candidates, NGC3603 IRS 9A. Our goal is to investigate with infrared interferometry the structure of IRS 9A on scales as small as 200AU, exploiting the fact that a cluster of O and B stars has blown away much of the obscuring foreground dust and gas. Observations in the N-band were carried out with the MIDI beam combiner attached to the VLTI. Additional interferometric observations which probe the structure of IRS 9A on larger scales were performed with an aperture mask installed in the T-ReCS instrument of Gemini South. The spectral energy distribution (SED) is constrained by the MIDI N-band spectrum and by data from the Spitzer Space Telescope. Our efforts to model the structure and SED of IRS 9A range from simple geometrical models of the brightness distribution to one- and two-dimensional radiative transfer computations. The target is resolved by T-ReCS, with an equivalent (elliptical) Gaussian width of 330mas by 280mas (2300 AU by 2000 AU). Despite this fact, a warm compact unresolved component was detected by MIDI which is possibly associated with the inner regions of a flattened dust distribution. Based on our interferometric data, no sign of multiplicity was found on scales between about 200AU and 700AU projected separation. A geometric model consisting of a warm (1000 K) ring (400 AU diameter) and a cool (140 K) large envelope provides a good fit to the data. No single model fitting all visibility and photometric data could be found, with disk models performing better than spherical models. While the data are clearly inconsistent with a spherical dust distribution they are insufficient to prove the existence of a disk but rather hint at a more complex dust distribution.Comment: 8 pages, 11 figures. Accepted for publication in A&

    Probing Spin-Charge Relation by Magnetoconductance in One-Dimensional Polymer Nanofibers

    Get PDF
    Polymer nanofibers are one-dimensional organic hydrocarbon systems containing conducting polymers where the non-linear local excitations such as solitons, polarons and bipolarons formed by the electron-phonon interaction were predicted. Magnetoconductance (MC) can simultaneously probe both the spin and charge of these mobile species and identify the effects of electron-electron interactions on these nonlinear excitations. Here we report our observations of a qualitatively different MC in polyacetylene (PA) and in polyaniline (PANI) and polythiophene (PT) nanofibers. In PA the MC is essentially zero, but it is present in PANI and PT. The universal scaling behavior and the zero (finite) MC in PA (PANI and PT) nanofibers provide evidence of Coulomb interactions between spinless charged solitons (interacting polarons which carry both spin and charge)

    Unveiling the Circumstellar Envelope and Disk: A Sub-Arcsecond Survey of Circumstellar Structures

    Get PDF
    We present the results of a 2.7 mm continuum interferometric survey of 24 young stellar objects in 11 fields. The target objects range from deeply embedded Class 0 sources to optical T Tauri sources. This is the first sub-arcsecond survey of the 2.7 mm dust continuum emission from young, embedded stellar systems. The images show a diversity of structure and complexity. The optically visible T Tauri stars (DG Tauri, HL Tauri, GG Tauri,and GM Aurigae) have continuum emission dominated by compact, less than 1", circumstellar disks. The more embedded near-infrared sources (SVS13 and L1551 IRS5) have continuum emission that is extended and compact. The embedded sources (L1448 IRS3, NGC1333 IRAS2, NGC1333 IRAS4, VLA1623, and IRAS 16293-2422) have continuum emission dominated by the extended envelope, typically more than 85%. In fact, in many of the deeply embedded systems it is difficult to uniquely isolate the disk emission component from the envelope extending inward to AU size scales. All of the target embedded objects are in multiple systems with separations on scales of 30" or less. Based on the system separation, we place the objects into three categories: separate envelope (separation > 6500 AU), common envelope (separation 150-3000 AU), and common disk (separation < 100 AU). These three groups can be linked with fragmentation events during the star formation process: separate envelopes from prompt initial fragmentation and the separate collapse of a loosely condensed cloud, common envelopes from fragmentation of a moderately centrally condensed spherical system, and common disk from fragmentation of a high angular momentum circumstellar disk.Comment: 47 Pages, 18 Figures, ApJ accepte
    corecore