69 research outputs found

    Improved Cross-correlation for Template Matching on the Laplacian Pyramid

    Full text link
    Template matching via cross-correlation on Laplacian pyramid image architectures has been traditionally performed in a "coarse" to "fine" fashion. In the present paper, we show that by computing cross-correlation within each level of the pyramid independently, and considering the su, across (expanded) levels, a significant improvement in Peak to Correlation Energy (PCE) [9] is obtained. This result is illustrated with a number of numerical examples

    Real-Time Restoration of Images Degraded by Uniform Motion Blur in Foveal Active Vision Systems

    Full text link
    Foveated, log-polar, or space-variant image architectures provide a high resolution and wide field workspace, while providing a small pixel computation load. These characteristics are ideal for mobile robotic and active vision applications. Recently we have described a generalization of the Fourier Transform (the fast exponential chirp transform) which allows frame-rate computation of full-field 2D frequency transforms on a log-polar image format. In the present work, we use Wiener filtering, performed using the Exponential Chirp Transform, on log-polar (fovcated) image formats to de-blur images which have been degraded by uniform camera motion.Defense Advanced Research Projects Agency and Office of Naval Research (N00014-96-C-0178); Office of Naval Research Multidisciplinary University Research Initiative (N00014-95-1-0409

    Location-Specific Cortical Activation Changes during Sleep after Training for Perceptual Learning

    Get PDF
    Visual perceptual learning is defined as performance enhancement on a sensory task and is distinguished from other types of learning and memory in that it is highly specific for location of the trained stimulus. The location specificity has been shown to be paralleled by enhancement in functional magnetic resonance imaging (fMRI) signal in the trained region of V1 after visual training. Although recently the role of sleep in strengthening visual perceptual learning has attracted much attention, its underlying neural mechanism has yet to be clarified. Here, for the first time, fMRI measurement of human V1 activation was conducted concurrently with a polysomnogram during sleep with and without preceding training for visual perceptual learning. As a result of predetermined region-of-interest analysis of V1, activation enhancement during non-rapid-eye-movement sleep after training was observed specifically in the trained region of V1. Furthermore, improvement of task performance measured subsequently to the post-training sleep session was significantly correlated with the amount of the trained-region-specific fMRI activation in V1 during sleep. These results suggest that as far as V1 is concerned, only the trained region is involved in improving task performance after sleep

    Reference-free removal of EEG-fMRI ballistocardiogram artifacts with harmonic regression

    Get PDF
    Combining electroencephalogram (EEG) recording and functional magnetic resonance imaging (fMRI) offers the potential for imaging brain activity with high spatial and temporal resolution. This potential remains limited by the significant ballistocardiogram (BCG) artifacts induced in the EEG by cardiac pulsation-related head movement within the magnetic field. We model the BCG artifact using a harmonic basis, pose the artifact removal problem as a local harmonic regression analysis, and develop an efficient maximum likelihood algorithm to estimate and remove BCG artifacts. Our analysis paradigm accounts for time-frequency overlap between the BCG artifacts and neurophysiologic EEG signals, and tracks the spatiotemporal variations in both the artifact and the signal. We evaluate performance on: simulated oscillatory and evoked responses constructed with realistic artifacts; actual anesthesia-induced oscillatory recordings; and actual visual evoked potential recordings. In each case, the local harmonic regression analysis effectively removes the BCG artifacts, and recovers the neurophysiologic EEG signals. We further show that our algorithm outperforms commonly used reference-based and component analysis techniques, particularly in low SNR conditions, the presence of significant time-frequency overlap between the artifact and the signal, and/or large spatiotemporal variations in the BCG. Because our algorithm does not require reference signals and has low computational complexity, it offers a practical tool for removing BCG artifacts from EEG data recorded in combination with fMRI.National Institutes of Health (U.S.) (Award DP1-OD003646)National Institutes of Health (U.S.) (Award TR01-GM104948)National Institutes of Health (U.S.) (Grant R44NS071988)National Institute of Neurological Diseases and Stroke (U.S.) (Grant Grant R44NS071988

    Solenoidal Micromagnetic Stimulation Enables Activation of Axons With Specific Orientation

    Get PDF
    Electrical stimulation of the central and peripheral nervous systems - such as deep brain stimulation, spinal cord stimulation, and epidural cortical stimulation are common therapeutic options increasingly used to treat a large variety of neurological and psychiatric conditions. Despite their remarkable success, there are limitations which if overcome, could enhance outcomes and potentially reduce common side-effects. Micromagnetic stimulation (μMS) was introduced to address some of these limitations. One of the most remarkable properties is that μMS is theoretically capable of activating neurons with specific axonal orientations. Here, we used computational electromagnetic models of the μMS coils adjacent to neuronal tissue combined with axon cable models to investigate μMS orientation-specific properties. We found a 20-fold reduction in the stimulation threshold of the preferred axonal orientation compared to the orthogonal direction. We also studied the directional specificity of μMS coils by recording the responses evoked in the inferior colliculus of rodents when a pulsed magnetic stimulus was applied to the surface of the dorsal cochlear nucleus. The results confirmed that the neuronal responses were highly sensitive to changes in the μMS coil orientation. Accordingly, our results suggest that μMS has the potential of stimulating target nuclei in the brain without affecting the surrounding white matter tracts
    • …
    corecore