10 research outputs found

    Gratings for Increasing Solid-State Laser Gain and Efficiency

    Get PDF
    We introduce new concepts for increasing the efficiency of solid state lasers by using gratings deposited on laser slabs or disks. The gratings improve efficiency in two ways: (1) by coupling out of the slab deleterious amplified spontaneous emission (ASE) and (2) by increasing the absorption efficiency of pump light. The gratings also serve as antireflective coatings for the extracting laser beam. To evaluate the potential for such coatings to improve laser performance, we calculated optical properties of a 2500 groove/mm, tantala-silica grating on a 1cm x 4cm x 8cm titanium-doped sapphire slab and performed ray-trace calculations for ASE and pump light. Our calculations show substantial improvements in efficiency due to grating ASE-coupling properties. For example, the gratings reduce pump energy required to produce a 0.6/cm gain coefficient by 9%, 20% and 35% for pump pulse durations of 0.5 {micro}s, 1{micro}s and 3{micro}s, respectively. Gratings also increase 532-nm pump-light absorption efficiency, particularly when the product slab overall absorption is small. For example, when the single-pass absorption is 1 neper, absorption efficiency increases from 66%, without gratings, to 86%, when gratings are used

    <title>Chirped-pulse amplification with flashlamp-pumped Ti:sapphire amplifiers</title>

    No full text
    Ti:Sapphire (Ti:Al{sub 2}O{sub 3}) amplifier stages are typically pumped with Q-switched Nd:YAG lasers doubled to 532 nm because of good spectral overlap, short temporal width, high repetition rate (i.e., 10 Hz to > 5 kHz) and the problems associated with flashlamp pumping a material with a relatively short upper state lifetime. Limitations to this pumping method arise due to the 1 to 1.5 joule/pulse ceiling found in most commercial high rep rate Nd:YAG lasers. The availability of high quality, large aperture Ti:Sapphire rods has made the flashlamp-pumping scheme an attractive option. The excellent thermal properties of Ti:Sapphire also allows an amplifier to be operated at high repetition rates. The front end of our laser relies on Chirped Pulse Amplification (CPA) in laser pumped Ti:Sapphire to generate 55 NJ, 90 fsec pulses at a 10 Hz rate. We report the use of a flashlamp pumped Ti:Sapphire head to further amplify the output of our system, producing 90 fsec, 250 NJ pulses at 5 Hz. The excellent output spatial profile yields a near diffraction-limited 5 {mu}m spot size and peak irradiance in excess of 5 {times} 10{sup 18} W/cm{sup 2}

    Relativistic quasimonoenergetic positron jets from intense laser-solid interactions.

    No full text
    Detailed angle and energy resolved measurements of positrons ejected from the back of a gold target that was irradiated with an intense picosecond duration laser pulse reveal that the positrons are ejected in a collimated relativistic jet. The laser-positron energy conversion efficiency is ∼2×10{-4}. The jets have ∼20 degree angular divergence and the energy distributions are quasimonoenergetic with energy of 4 to 20 MeV and a beam temperature of ∼1  MeV. The sheath electric field on the surface of the target is shown to determine the positron energy. The positron angular and energy distribution is controlled by varying the sheath field, through the laser conditions and target geometry

    Relativistic quasimonoenergetic positron jets from intense laser-solid interactions.

    No full text
    Detailed angle and energy resolved measurements of positrons ejected from the back of a gold target that was irradiated with an intense picosecond duration laser pulse reveal that the positrons are ejected in a collimated relativistic jet. The laser-positron energy conversion efficiency is ∼2×10{-4}. The jets have ∼20 degree angular divergence and the energy distributions are quasimonoenergetic with energy of 4 to 20 MeV and a beam temperature of ∼1  MeV. The sheath electric field on the surface of the target is shown to determine the positron energy. The positron angular and energy distribution is controlled by varying the sheath field, through the laser conditions and target geometry

    Progress Towards a Laser Produced Relativistic Electron-Positron Pair Plasma

    No full text
    A set of experiments has been performed exploring unique characteristics of pair jets and plasmas at several energetic short-pulse laser facilities including Titan at Livermore and OMEGA EP in Rochester, as well as the Osaka LFEX and AWE Orion lasers. New results are summarized, including positron beam emittance, scaling of pair production vs. laser energy, and initial results on the pair jet collimation using electromagnetic fields
    corecore