214 research outputs found

    Polypyrrole-Fe2O3 nanohybrid materials for electrochemical storage

    Get PDF
    We report on the synthesis and electrochemical characterization of nanohybrid polypyrrole (PPy) (PPy/Fe2O3) materials for electrochemical storage applications. We have shown that the incorporation of nanoparticles inside the PPy notably increases the charge storage capability in comparison to the “pure” conducting polymer. Incorporation of large anions, i.e., paratoluenesulfonate, allows a further improvement in the capacity. These charge storage modifications have been attributed to the morphology of the composite in which the particle sizes and the specific surface area are modified with the incorporation of nanoparticles. High capacity and stability have been obtained in PC/NEt4BF4 (at 20 mV/s), i.e., 47 mAh/g, with only a 3% charge loss after one thousand cyles. The kinetics of charge–discharge is also improved by the hybrid nanocomposite morphology modifications, which increase the rate of insertion–expulsion of counter anions in the bulk of the film. A room temperature ionic liquid such as imidazolium trifluoromethanesulfonimide seems to be a promising electrolyte because it further increases the capacity up to 53 mAh/g with a high stability during charge–discharge processes

    Ultrafast structure and dynamics in ionic liquids: 2D-IR spectroscopy probes the molecular origin of viscosity

    Get PDF
    The viscosity of imidazolium ionic liquids increases dramatically when the strongest hydrogen bonding location is methylated. In this work, ultrafast two-dimensional vibrational spectroscopy of dilute thiocyanate ion ([SCN] -) in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4C1im][NTf2]) and 1-butyl-2,3- dimethylimidazolium bis(trifluoromethylsulfonyl)imide ([C4C 1C12im][NTf2]) shows that the structural reorganization occurs on a 26 ± 3 ps time scale and on a 47 ± 15 ps time scale, respectively. The results suggest that the breakup of local ion-cages is the fundamental event that activates molecular diffusion and determines the viscosity of the fluids. © 2014 American Chemical Society

    Electrochemical Oxidation and Sensing of Methylamine Gas in Room Temperature Ionic Liquids

    Get PDF
    The electrochemical behaviour of methylamine gas in several room temperature ionic liquids (RTILs), [C2mim][NTf2], [C4mim][NTf2], [C6mim][FAP], [C4mpyrr][NTf2], [C4mim][BF4], and [C4mim][PF6] has been investigated on a Pt microelectrode using cyclic voltammetry. A broad oxidation wave at approximately 3 V, two reduction peaks and another oxidation peak was observed. A complicated mechanism is predicted based on the voltammetry obtained, with ammonia gas as a likely by-product. The currents obtained suggest that methylamine has a high solubility in RTILs, which is important for gas sensing applications. The analytical utility of methylamine was then studied in [C4mpyrr][NTf2] and [C2mim][NTf2]. A linear calibration graph with an R2 value of 0.99 and limits of detection of 33 and 34 ppm were obtained respectively, suggesting that RTILs are favourable non-volatile solvents for the electrochemical detection of highly toxic methylamine gas

    Raman Spectroscopy and Ab-Initio Model Calculations on Ionic Liquids:Invited Review

    Get PDF
    corecore