2,138 research outputs found
Observation of a linear temperature dependence of the critical current density in a Ba_{0.63}K_{0.37}BiO_3 single crystal
For a Ba_{0.63}K_{0.37}BiO_3 single crystal with T_c=31 K, H_{c1}=750 Oe at 5
K, and dimensions 3x3x1 mm^3, the temperature and field dependences of magnetic
hysteresis loops have been measured within 5-25 K in magnetic fields up to 6
Tesla. The critical current density is J_c(0)=1.5 x 10^5 A/cm^2 at zero field
and 1 x 10^5 A/cm^2 at 1 kOe at 5 K. J_c decreases exponentially with
increasing field up to 10 kOe. A linear temperature dependence of J_c is
observed below 25 K, which differs from the exponential and the power-law
temperature dependences in high-Tc superconductors including the BKBO. The
linear temperature dependence can be regarded as an intrinsic effect in
superconductors.Comment: RevTex, Physica C Vol. 341-348, 729 (2000
Protein synthesis and degradation are required for the incorporation of modified information into the pre-existing object-location memory
Although some reports indicate that protein synthesis dependent process may be induced by updating information, the role of protein synthesis and degradation in changing the content of pre-existing memory is yet unclear. In this study, we utilized an object rearrangement task, in which partial information related to a pre-existing memory is changed, promoting memory modification. Inhibitors of both protein synthesis and protein degradation impaired adequate incorporation of the altered information, each in a distinctive way. These results indicate that protein synthesis and degradation play key roles in memory modification
Synthesis of VO_2 Nanowire and Observation of the Metal-Insulator Transition
We have fabricated crystalline nanowires of VO_2 using a new synthetic
method. A nanowire synthesized at 650^oC shows the semiconducting behavior and
a nanowire at 670^oC exhibits the first-order metal-insulator transition which
is not the one-dimensional property. The temperature coefficient of resistance
in the semiconducting nanowire is 7.06 %/K at 300 K, which is higher than that
of commercial bolometer.Comment: 3 pages, 4 figures, This was presented in NANOMAT 2006 "International
workshop on nanostructed materials" on June 21-23th of 2006 in Antalya/TURKE
Temperature dependence of Mott transition in VO_2 and programmable critical temperature sensor
The temperature dependence of the Mott metal-insulator transition (MIT) is
studied with a VO_2-based two-terminal device. When a constant voltage is
applied to the device, an abrupt current jump is observed with temperature.
With increasing applied voltages, the transition temperature of the MIT current
jump decreases. We find a monoclinic and electronically correlated metal (MCM)
phase between the abrupt current jump and the structural phase transition
(SPT). After the transition from insulator to metal, a linear increase in
current (or conductivity) is shown with temperature until the current becomes a
constant maximum value above T_{SPT}=68^oC. The SPT is confirmed by micro-Raman
spectroscopy measurements. Optical microscopy analysis reveals the absence of
the local current path in micro scale in the VO_2 device. The current uniformly
flows throughout the surface of the VO_2 film when the MIT occurs. This device
can be used as a programmable critical temperature sensor.Comment: 4 pages, 3 figure
- …