6 research outputs found

    Untangling the extracellular matrix of idiopathic epiretinal membrane: a path winding among structure, interactomics and translational medicine

    Get PDF
    Idiopathic epiretinal membranes (iERMs) are fibrocellular sheets of tissue that develop at the vit-reoretinal interface. iERMs consist of cells and extracellular matrix (ECM) formed by a complex array of structural proteins and a large number of proteins that regulate cell-matrix interaction, matrix deposition and remodelling. Many components of the ECM tend to produce a layered pat-tern that can influence the tractional properties of the membranes. We applied a bioinformatics approach on a list of proteins previously identified with an MS-based proteomic analysis on sam-ples of iERM to report the interactome of some key proteins. The performed pathway analysis highlights interactions occurring among ECM molecules, their cell receptors, and intra or extra-cellular proteins that may play a role in matrix biology, in this special context. In particular, integ-rin ÎČ1, cathepsin B, epidermal growth factor receptor, protein-glutamine gam-ma-glutamyltransferase 2, and prolow-density lipoprotein receptor-related protein 1 are key hubs in the outlined protein-protein cross-talks. A section on the biomarkers that can be found in the vitreous humor of patients affected by iERM and that can modulate matrix deposition is also pre-sented. Finally, translational medicine in iERM treatment has been summed up taking stock of the techniques that have been proposed for pharmacologic vitreolysi

    Co-Expression of Podoplanin and CD44 in Proliferative Vitreoretinopathy Epiretinal Membranes

    Get PDF
    Epiretinal membranes (ERMs) are sheets of tissue that pathologically develop in the vitreoretinal interface leading to progressive vision loss. They are formed by different cell types and by an exuberant deposition of extracellular matrix proteins. Recently, we reviewed ERMs’ extracellular matrix components to better understand molecular dysfunctions that trigger and fuel the onset and development of this disease. The bioinformatics approach we applied delineated a comprehensive overview on this fibrocellular tissue and on critical proteins that could really impact ERM physiopathology. Our interactomic analysis proposed the hyaluronic-acid-receptor cluster of differentiation 44 (CD44) as a central regulator of ERM aberrant dynamics and progression. Interestingly, the interaction between CD44 and podoplanin (PDPN) was shown to promote directional migration in epithelial cells. PDPN is a glycoprotein overexpressed in various cancers and a growing body of evidence indicates its relevant function in several fibrotic and inflammatory pathologies. The binding of PDPN to partner proteins and/or its ligand results in the modulation of signaling pathways regulating proliferation, contractility, migration, epithelial–mesenchymal transition, and extracellular matrix remodeling, all processes that are vital in ERM formation. In this context, the understanding of the PDPN role can help to modulate signaling during fibrosis, hence opening a new line of therap

    Loco-regional treatment with temozolomide-loaded thermogels prevents glioblastoma recurrences in orthotopic human xenograft models

    Get PDF
    Glioblastoma multiforme (GBM) is the most aggressive primary tumor of the central nervous system and the diagnosis is often dismal. GBM pharmacological treatment is strongly limited by its intracranial location beyond the blood–brain barrier (BBB). While Temozolomide (TMZ) exhibits the best clinical performance, still less than 20% crosses the BBB, therefore requiring administration of very high doses with resulting unnecessary systemic side efects. Here, we aimed at designing new negative temperature‐responsive gel formulations able to locally release TMZ beyond the BBB. The biocompatibility of a chitosan‐ÎČ‐glycerophosphate‐based thermogel (THG)‐containing mesoporous SiO2 nanoparticles (THG@SiO2) or polycaprolactone microparticles (THG@PCL) was ascertained in vitro and in vivo by cell counting and histological examination. Next, we loaded TMZ into such matrices (THG@SiO2‐TMZ and THG@PCL‐TMZ) and tested their therapeutic potential both in vitro and in vivo, in a glioblastoma resection and recurrence mouse model based on orthotopic growth of human cancer cells. The two newly designed anticancer formulations, consisting in TMZ‐silica (SiO2@TMZ) dispersed in the thermogel matrix (THG@SiO2‐TMZ) and TMZ, spray‐dried on PLC and incorporated into the thermogel (THG@PCL‐TMZ), induced cell death in vitro. When applied intracranially to a resected U87‐MG‐Red‐FLuc human GBM model, THG@SiO2‐TMZ and THG@PCL‐ TMZ caused a signifcant reduction in the growth of tumor recurrences, when compared to untreated controls. THG@SiO2‐TMZ and THG@PCL‐TMZ are therefore new promising gel‐based local therapy candidates for the treatment of GBM

    Alteration of Immunoregulatory Patterns and Survival Advantage of Key Cell Types in Food Allergic Children

    No full text
    All allergic responses to food indicate the failure of immunological tolerance, but it is unclear why cow’s milk and egg (CME) allergies resolve more readily than reactivity to peanuts (PN). We sought to identify differences between PN and CME allergies through constitutive immune status and responses to cognate and non-cognate food antigens. Children with confirmed allergy to CME (n = 6) and PN (n = 18) and non-allergic (NA) (n = 8) controls were studied. Constitutive secretion of cytokines was tested in plasma and unstimulated mononuclear cell (PBMNC) cultures. Blood dendritic cell (DC) subsets were analyzed alongside changes in phenotypes and soluble molecules in allergen-stimulated MNC cultures with or without cytokine neutralization. We observed that in allergic children, constitutively high plasma levels IL-1ÎČ, IL-2, IL-4, IL-5 and IL-10 but less IL-12p70 than in non-allergic children was accompanied by the spontaneous secretion of sCD23, IL-1ÎČ, IL-2, IL-4, IL-5, IL-10, IL-12p70, IFN-Îł and TNF-α in MNC cultures. Furthermore, blood DC subset counts differed in food allergy. Antigen-presenting cell phenotypic abnormalities were accompanied by higher B and T cell percentages with more Bcl-2 within CD69+ subsets. Cells were generally refractory to antigenic stimulation in vitro, but IL-4 neutralization led to CD152 downregulation by CD4+ T cells from PN allergic children responding to PN allergens. Canonical discriminant analyses segregated non-allergic and allergic children by their cytokine secretion patterns, revealing differences and areas of overlap between PN and CME allergies. Despite an absence of recent allergen exposure, indication of in vivo activation, in vitro responses independent of challenging antigen and the presence of unusual costimulatory molecules suggest dysregulated immunity in food allergy. Most importantly, higher Bcl-2 content within key effector cells implies survival advantage with the potential to mount abnormal responses that may give rise to the manifestations of allergy. Here, we put forward the hypothesis that the lack of apoptosis of key immune cell types might be central to the development of food allergic reactions

    Clinical Anatomy of the Spina Musculi Recti Lateralis: A Frequently Overlooked Variation of the Greater Wing of the Sphenoid

    No full text
    The spina musculi recti lateralis (SMRL) is often visible along the lateral rim of the superior orbital fissure (SOF). Aim of this study is to characterize SMRL morphology and topography relative to known bony landmarks. Methods Orbits from 291 adult dry skulls and from 60 CT scans were analyzed to measure the distance between the SMRL and the SOF or the inferior orbital fissures (IOF) as well as its height, width and orientation. Processes other than SMRLs were also recorded. Foetal skulls were observed for comparison with adult samples. Results Forty-one per cent of orbits on dry skulls and 43.3% by CT showed an SMRL. Additional 31.9% of orbits on dry skulls had processes with a different shape. On average, SMRL were orientated almost along the transverse plane and showerd implant bases as wide as 141.9° or as narrow as 36.8°. SMRLs were close to the infero-posterior angle of the orbital plate of the sphenoid, 1.21 ± 0.84 mm in front of the SOF, 5.8 ± 1.9 mm above the IOF and 12 ± 2.3 mm from the anterior end of the SOF. They were 1.58 ± 0.64 mm high and did not show any age or sex-related prevalence. By CT, the SMRL appeared as the insertion site for the lateral rectus, tendinous ring and, sometimes, inferior rectus. Conclusions The SMRL is a process of the sphenoidal orbital plate rather than of the SOF. It is also a reliable landmark for the insertion of the tendinous ring and lateral rectus. Orbital surgeon should be aware of this common variant of the orbital apex

    Development and validation of derivatization-based LC-MS/MS method for quantification of short-chain fatty acids in human, rat, and mouse plasma

    No full text
    Short-chain fatty acids (SCFAs), the end products of gut microbial fermentation of dietary fibers and non-digestible polysaccharides, act as a link between the microbiome, immune system, and inflammatory processes. The importance of accurately quantifying SCFAs in plasma has recently emerged to understand their biological role. In this work, a sensitive and reproducible LC-MS/MS method is reported for SCFAs quantification in three different matrices such as human, rat and mouse plasma via derivatization, using as derivatizing agent O-benzylhydroxylamine (O-BHA), coupled with liquid-liquid extraction. First, the instrumental parameters of the mass spectrometer and then the chromatographic conditions were optimized using previously SCFAs derivatives synthetized and used as standards. After that, the best conditions for derivatization and extraction from plasma were studied and a series of determinations were performed on human, rat, and mouse plasma aliquots to validate the overall method (derivatization, extraction, and LC-MS/MS determination). The method showed good performance in terms of recovery (> 80%), precision (RSD <14%), accuracy (RE <±10%) and sensitivity (LOQ of 0.01 ΌM for acetic, butyric, propionic and isobutyric acid) in all plasma samples. The method thus developed and validated was applied to the quantification of major SCFAs in adult and aged mice, germ-free mice and in germ-free recipient mice subjected to faecal transplant from adult and aged donors. Results highlighted how plasma concentrations of SCFAs are correlated with age further highlighting the importance of developing a method that is reliable for the quantification of SCFAs to study their biological rol
    corecore