203 research outputs found
COCO_TS Dataset: Pixel-level Annotations Based on Weak Supervision for Scene Text Segmentation
The absence of large scale datasets with pixel-level supervisions is a
significant obstacle for the training of deep convolutional networks for scene
text segmentation. For this reason, synthetic data generation is normally
employed to enlarge the training dataset. Nonetheless, synthetic data cannot
reproduce the complexity and variability of natural images. In this paper, a
weakly supervised learning approach is used to reduce the shift between
training on real and synthetic data. Pixel-level supervisions for a text
detection dataset (i.e. where only bounding-box annotations are available) are
generated. In particular, the COCO-Text-Segmentation (COCO_TS) dataset, which
provides pixel-level supervisions for the COCO-Text dataset, is created and
released. The generated annotations are used to train a deep convolutional
neural network for semantic segmentation. Experiments show that the proposed
dataset can be used instead of synthetic data, allowing us to use only a
fraction of the training samples and significantly improving the performances
Experimental cannibalization of plagioclase by alkaline basalt magmas
Time-series crystallization/dissolution experiments were conducted on a natural potassic basalt seeded with bytownitic plagioclases (Plg) at atmospheric pressure, in air, at 1180- 1240 °C and isothermal dwell time up to 20 hours. Plg-seed presence promotes the early formation of new-Plg, dampening the clinopyroxene (Cpx) crystallization. New-Plgs grow at a rate from 10-6 up to 10-8 cm·s-1 as the dwell time increases. Seeds overgrow at similar rate. Cpx crystallizes with a delay of at least 3 hours; this has a significant impact on the composition of both residual melt and new-Plgs. For undercooling >35 °C the Cpx delay causes a strong supersaturation of this phase in the melt resulting in a decrease in the new-Plg nucleation rate by 2 orders of magnitude in the 3 h-experiment. In the 15h-run, Cpx coarsening and the decrease of crystallinity suggest the achievement of a near-equilibrium conditions. Cpx growth rate is in the order of 10-7 cm·s-1 showing very limited variation. Finally, for the investigated superheating (5-15 °C) only the long lasting experiments allows an estimation of Plg dissolution rate (10-9 cm·s-1) although changes in the melt composition are already detectable in the 3h-runs.
As a whole our results suggest that in natural systems, the takeover of antecrysts/ xenocrysts by a magma can induce on a short time scales, changes in its initial nucleation behavior with remarkable petrological implications for the solidification paths and eruptive dynamics of potassic magmatic systems
Base cation mobility in vineyard soils of the Colli Albani volcanic district (Central Italy)
The quality of the Colli Albani volcanic soils has certainly contributed to the vine cultivars hence the name of one of the oldest wines (i.e., Alban wine). The alkali up to 15 wt%, SiO2 ≤ 52 wt% and the emplacement at high temperature (≤ 600 °C) are the bedrock features that have deeply influenced the soil-forming processes in the vineyards. However, the peculiar features of the Colli Albani soils are not well known. Field survey and textural, mineralogical, and chemical data obtained with SEM, EMP, XRD, and ICP-OES were used to characterize the vineyard soils of the Colli Albani. Leucite (Lct)-bearing soils and quartz (Qz)-bearing soils occur in the studied vineyard. The Qz-bearing soils represent more weathered volcanic material, depleted in primary minerals and enriched in clays, which show a lower cation exchange capacity (CEC) than the Lct-bearing soils. CEC is a misleading definition for the Colli Albani soils because the base cation mobility in the vineyard is independent from clay mineral enrichment in the soil. Actually, the release of K, Na, Ca, and Mg depends by (i) the complete dissolution of leucite and analcime, (ii) the oxy-reaction affecting the phlogopite, which releases K + Mg, and (iii) the incongruent dissolution of clinopyroxene characterized by the “gothic texture.” This texture highlights the capacity of clinopyroxene to release Ca and Mg in volcanic soils. Quantification of the texture and abundance of the primary minerals are mandatory for the management of the vineyard soils in the Colli Albani and, in general, it is significative for the vineyards in volcanic areas
Quantum Double and Differential Calculi
We show that bicovariant bimodules as defined by Woronowicz are in one to one
correspondence with the Drinfeld quantum double representations. We then prove
that a differential calculus associated to a bicovariant bimodule of dimension
n is connected to the existence of a particular (n+1)--dimensional
representation of the double. An example of bicovariant differential calculus
on the non quasitriangular quantum group E_q(2) is developed. The construction
is studied in terms of Hochschild cohomology and a correspondence between
differential calculi and 1-cocycles is proved. Some differences of calculi on
quantum and finite groups with respect to Lie groups are stressed.Comment: Revised version with added cohomological analysis. 14 pages, plain
te
First flight data from the PAMELA spectrometer
Abstract PAMELA is a satellite-borne experiment designed to study charged particles in the cosmic radiation, optimized in particular for antimatter components search. The experiment is mounted on the Resurs DK1 satellite that was launched on June 15th 2006 from Baikonur cosmodrome and is now collecting data from a semi-polar elliptical orbit around the Earth. The core of the PAMELA apparatus is a magnetic spectrometer, designed to determine precisely the rigidity and the absolute charge of particles crossing the detector. The tracking system is composed of six planes of silicon microstrip detectors dipped in an almost uniform magnetic field generated by a permanent magnet made of an Nd–Fe–B alloy. Some preliminary analysis about the spectrometer's performances, made using data collected since July 2006 till June 2007, are here reviewed
Quantum (1+1) extended Galilei algebras: from Lie bialgebras to quantum R-matrices and integrable systems
The Lie bialgebras of the (1+1) extended Galilei algebra are obtained and
classified into four multiparametric families. Their quantum deformations are
obtained, together with the corresponding deformed Casimir operators. For the
coboundary cases quantum universal R-matrices are also given. Applications of
the quantum extended Galilei algebras to classical integrable systems are
explicitly developed.Comment: 16 pages, LaTeX. A detailed description of the construction of
integrable systems is carried ou
Status of the PAMELA silicon tracker
PAMELA is a composite particle detector which will be launched during the first half of 2006 on board the Russian satellite Resurs DK-1 from Baikonur cosmodrome in Kazakhstan. This experiment is mainly conceived for the study of cosmic-ray antiparticles and for the search for light antinuclei, but other issues related to the cosmic-ray physics will be investigated. In this work the structure of the whole apparatus is shortly discussed with particular attention to the magnetic spectrometer, which has been designed and built in Firenze
Enhancement of hadron–electron discrimination in calorimeters by detection of the neutron component
In many physics experiments where calorimeters are employed, the requirement of an accurate energy measurement is accompanied by the requirement of very high hadronelectron discrimination power. Normally the latter requirement is achieved by designing a high-granularity detector with sufficient depth so that the showers can fully develop. This method has many drawbacks ranging from the high number of electronic channels to the high mass of the detector itself. Some of these drawbacks may in fact severely limit the deployment of such a detector in many experiments, most notably in space-based ones. Another method, proposed by our group and currently under investigation, relies on the use of scintillation detectors which are sensitive to the neutron component of the hadron showers. Here a review of the current status will be presented starting with the simulations performed both with GEANT4 and FLUKA. A small prototype detector has been built and has been tested in a high-energy pion/electron beam behind a "shallow" calorimeter. Results are encouraging and indicate that it is possible to enhance the discrimination power of an existing calorimeter by the addition of a small-mass neutron detector, thus paving the way for better performing astroparticle experiments. © 2010 Elsevier B.V. All rights reserved
The silicon microstrip detectors of the PAMELA experiment: simulation and test results
Abstract The PAMELA detector will fly at the beginning of 2004 on board the Russian satellite Resurs–DK for a 3-year mission designed to study mainly antiparticles in cosmic rays. The core of the apparatus is a magnetic spectrometer in which silicon microstrip detectors are employed. A dedicated simulation study, tuned on beam test data, is presented: it allows to determine the best position finding algorithm for different incidence angles
A powerful tracking detector for cosmic rays: the magnetic spectrometer of the PAMELA satellite experiment
Abstract The WiZaxd-PAMELA detector will be ready within some months to be installed on board of the Russian satellite Resurs-DK1. The satellite will follow, for at least 3 years, a quasi polar orbit with an inclination of 70.4° with respect to the equatorial plane. The experiment will allow the measurement of the antiproton and positron spectra within a wide momentum range and the search for light anti-nuclei in cosmic rays. The detector subsystems have been tested and the final assembly phase is in progress. In this paper we describe the structure of the PAMELA magnetic spectrometer, its current status and some precautions taken to satisfy the requirements of the mission
- …