120 research outputs found
Water-Protein Interactions: The Secret of Protein Dynamics
Water-protein interactions help to maintain flexible conformation conditions which are required for multifunctional protein recognition processes. The intimate relationship between the protein surface and hydration water can be analyzed by studying experimental water properties measured in protein systems in solution. In particular, proteins in solution modify the structure and the dynamics of the bulk water at the solute-solvent interface. The ordering effects of proteins on hydration water are extended for several angstroms. In this paper we propose a method for analyzing the dynamical properties of the water molecules present in the hydration shells of proteins. The approach is based on the analysis of the effects of protein-solvent interactions on water protons NMR relaxation parameters. NMR relaxation parameters, especially the nonselective (R1NS ) and selective (R1SE ) spin-lattice relaxation rates of water protons, are useful for investigating the solvent dynamics at the macromolecule-solvent interfaces as well as the perturbation effects caused by the water-macromolecule interactions on the solvent dynamical properties. In this paper we demonstrate that Nuclear Magnetic Resonance Spectroscopy can be used to determine the dynamical contributions of proteins to the water molecules belonging to their hydration shells
Cross-Linked Hyaluronan Derivatives in the Delivery of Phycocyanin
An easy and viable crosslinking technology, based on the âclick-chemistryâ reaction
copper(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (click-crosslinking), was applied to graft
copolymers of medium molecular weight (i.e., 270 kDa) hyaluronic acid (HA) grafted with ferulic acid
(FA) residues bearing clickable propargyl groups, as well as caffeic acid derivatives bearing azidoterminated
oligo(ethylene glycol) side chains. The obtained crosslinked materials were characterized
from the point of view of their structure and aggregation liability to form hydrogels in a water
environment. The most promising materials showed interesting loading capability regarding the
antioxidant agent phycocyanin (PC). Two novel materials complexes (namely HA(270)-FA-TEGECCL-
20/PC and HA(270)-FA-HEGEC-CL-20/PC) were obtained with a drug-to-material ratio of 1:2
(w/w). Zeta potential measurements of the new complexes (â1.23 mV for HA(270)-FA-TEGECCL-
20/PC and â1.73 mV for HA(270)-FA-HEGEC-CL-20/PC) showed alterations compared to the
zeta potential values of the materials on their own, suggesting the achievement of drugâmaterial
interactions. According to the in vitro dissolution studies carried out in different conditions, novel
drug delivery systems (DDSs) were obtained with a variety of characteristics depending on the
desired route of administration and, consequently, on the pH of the surrounding environment, thanks
to the complexation of phycocyanin with these two new crosslinked materials. Both complexes
showed excellent potential for providing a controlled/prolonged release of the active pharmaceutical
ingredient (API). They also increased the amount of drug that reach the target location, enabling
pH-dependent release. Importantly, as demonstrated by the DPPH free radical scavenging assay,
the complexation process, involving freezing and freeze-drying, showed no adverse effects on the
antioxidant activity of phycocyanin. This activity was preserved in the two novel materials and
followed a concentration-dependent pattern similar to pure PC
Design and optimization of solid lipid nanoparticles loaded with Triamcinolone Acetonide
Principles of quality by design and design of experiments are acquiring more importance in the discovery and application of new drug carriers, such as solid lipid nanoparticles. In this work, an optimized synthesis of solid lipid nanoparticles loaded with Triamcinolone Acetonide is presented using an approach that involves Stearic Acid as a lipid, soy PC as an ionic surfactant, and Tween 80 as a nonionic surfactant. The constructed circumscribed Central Composite Design considers the lipid and nonionic surfactant quantities and the sonication amplitude in order to optimize particle size and Zeta potential, both measured by means of Dynamic Light Scattering, while the separation of unentrapped drug from the optimized Triamcinolone Acetonide-loaded solid lipid nanoparticles formulation is performed by Size Exclusion Chromatography and, subsequently, the encapsulation efficiency is determined by HPLC-DAD. The proposed optimized formulationâwith the goal of maximizing Zeta potential and minimizing particle sizeâhas shown good accordance with predicted values of Zeta potential and dimensions, as well as a high value of encapsulated Triamcinolone Acetonide. Experimental values obtained from the optimized synthesis reports a dimension of 683 ± 5 nm, which differs by 3% from the predicted value, and a Zeta potential of â38.0 ± 7.6 mV (12% difference from the predicted value). © 2023 by the authors
Chemical characterization and antioxidant properties of products and byâproducts from Olea europaea L.
The products and by-products of Olea europaea L.: olive fruits (primary agricultural product), oils (primary agro-industrial product), pomaces (agro-industrial processing by-product), and leaves (agricultural practices by-product), are promising sources of bioactive compounds. In the present study, qualitative and quantitative analyses of selected bioactive components in olive fruits, oils, and pomaces were performed. Total polyphenol content and antioxidant activity were analyzed in all samples (humid pomaces 2015: TPP, 26.0 ± 1.5â43.7 ± 3.0 g(GAEq)/kg DW; TEAC/ABTS, 189.5 ± 3.7â388.1 ± 12.0 mmol(Trx)kg DW). Radical (DPPH) quenching potential was analyzed via photometric and EPR methods, obtaining Vis/EPR signal ratio by 1.05 ± 0.45 and 1.66 ± 0.39 for fruits and pomaces, respectively. Through HPLC-UV and HPLC-MS/MS techniques, oleuropein and hydroxytyrosol, as well as selected hydroxycinnamic acids and flavonoids, were identified and quantified in olive fruits and pomaces. The main components were rutin, luteolin, and chlorogenic acid. Cytotoxic assay on fibroblast cells revealed toxic effects for selected extracts at highest tested concentrations (5%)
Physiochemical characterization of lipidic nanoformulations encapsulating the antifungal drug natamycin
Natamycin is a tetraene polyene that exploits its antifungal properties by irreversibly binding components of fungal cell walls, blocking the growth of infections. However, topical ocular treatments with natamycin require frequent application due to the low ability of this molecule to permeate the ocular membrane. This limitation has limited the use of natamycin as an antimycotic drug, despite it being one of the most powerful known antimycotic agents. In this work, different lipidic nanoformulations consisting of transethosomes or lipid nanoparticles containing natamycin are proposed as carriers for optical topical administration. Size, stability and zeta potential were characterized via dynamic light scattering, the supramolecular structure was investigated via small- and wide-angle X-ray scattering and 1H-NMR, and the encapsulation efficiencies of the four proposed formulations were determined via HPLC-DAD
Click-Chemistry Cross-Linking of Hyaluronan Graft Copolymers
An easy and viable crosslinking procedure by click-chemistry (click-crosslinking) of hyaluronic acid (HA) was developed. In particular, the clickable propargyl groups of hyaluronane-based HA-FA-Pg graft copolymers showing low and medium molecular weight values were exploited in crosslinking by click-chemistry by using a hexa(ethylene glycol) spacer. The resulting HA-FA-HEG-CL materials showed an apparent lack of in vitro cytotoxic effects, tuneable water affinity, and rheological properties according to the crosslinking degree that suggests their applicability in different biomedical fields
The Impact of Crystal Light Yield Non-Proportionality on a Typical Calorimetric Space Experiment: Beam Test Measurements and Monte Carlo Simulations
Calorimetric space experiments were employed for the direct measurements of cosmic-ray spectra above the TeV region. According to several theoretical models and recent measurements, relevant features in both electron and nucleus fluxes are expected. Unfortunately, sizable disagreements among the current results of different space calorimeters exist. In order to improve the accuracy of future experiments, it is fundamental to understand the reasons of these discrepancies, especially since they are not compatible with the quoted experimental errors. A few articles of different collaborations suggest that a systematic error of a few percentage points related to the energy-scale calibration could explain these differences. In this work, we analyze the impact of the nonproportionality of the light yield of scintillating crystals on the energy scale of typical calorimeters. Space calorimeters are usually calibrated by employing minimal ionizing particles (MIPs), e.g., nonshowering proton or helium nuclei, which feature different ionization density distributions with respect to particles included in showers. By using the experimental data obtained by the CaloCube collaboration and a minimalist model of the light yield as a function of the ionization density, several scintillating crystals (BGO, CsI(Tl), LYSO, YAP, YAG and BaF2) are characterized. Then, the response of a few crystals is implemented inside the Monte Carlo simulation of a space calorimeter to check the energy deposited by electromagnetic and hadronic showers. The results of this work show that the energy scale obtained by MIP calibration could be affected by sizable systematic errors if the nonproportionality of scintillation light is not properly taken into account
Physicochemical Characterization of Hyaluronic Acid and Chitosan Liposome Coatings
Hyaluronic acid (HA) and chitosan (CH) are biopolymers that are widely used in many biomedical applications and for cosmetic purposes. Their chemical properties are fundamental to them working as drug delivery systems and improving their synergistic effects. In this work, two different protocols were used to obtain zwitterionic liposomes coated with either hyaluronic acid or chitosan. Specifically, the methodologies used to perform vesicle preparation were chosen by taking into account the specific chemical properties of these two polysaccharides. In the case of chitosan, liposomes were first synthesized and then coated, whereas the coating of hyaluronic acid was achieved through lipidic film hydration in an HA aqueous solution. The size and the zeta-potential of the polysaccharide-coated liposomes were determined by dynamic light scattering (DLS). This approach allowed coated liposomes to be obtained with hydrodynamic diameters of 264.4 ± 12.5 and 450.3 ± 16.7 nm for HA- and CH-coated liposomes, respectively. The chemical characterization of the coated liposomal systems was obtained by surface infrared (ATR-FTIR) and nuclear magnetic resonance (NMR) spectroscopies. In particular, the presence of polysaccharides was confirmed by the bands assigned to amides and saccharides being in the 1500–1700 cm−1 and 800–1100 cm−1 regions, respectively. This approach allowed confirmation of the efficiency of the coating processes, evidencing the presence of HA or CH at the liposomal surface. These data were also supported by time-of-flight secondary ion mass spectrometry (ToF-SIMS), which provided specific assessments of surface (3–5 nm deep) composition and structure of the polysaccharide-coated liposomes. In this work, the synthesis and the physical chemistry characterization of coated liposomes with HA or CH represent an important step in improving the pharmacological properties of drug delivery systems
Interaction Study of Bioactive Molecules with Fibrinogen and Human Platelets Determined by 1H-NMR Relaxation Experiments
In order to investigate the interaction processes between bioactive molecules and macromolecular receptors
NMR methodology based on the analysis of selective and non-selective spinâlattice relaxation rate
enhancements of ligand protons was used.
The contribution from the bound ligand fraction to the observed relaxation rate in relation to macromolecular
target concentration allowed the calculation of the normalized afïŹnity index
in which the
effects of motional anisotropies and different proton densities have been removed.
In this paper, we applied this methodology to investigate the afïŹnity of epinephrine and isoproterenol
towards two different systems: ïŹbrinogen and platelets
Green hydrogels loaded with extracts from Solanaceae for the controlled disinfection of agricultural soils
The UN 2030 Agenda for Sustainable Development established the goal of cutting the use of pesticides in the EU by 50% by 2030. However, a ban on pesticides could seriously affect the productivity of agriculture, resulting in severe issues due to global hunger and food deficiency. Controlled release (CR) of bioactive chemicals could play a valid alternative in this context. To this aim, two biodegradable polymers, namely sodium alginate (AL) and sodium carboxymethylcellulose (CMC), were employed to obtain crosslinked hydrogel beads for the encapsulation and CR of glycoalkaloids extracted from tomato and potato leaves to be used as biocompatible disinfectants for agricultural soils. The physico-chemical characterization of the controlled-release systems was carried out by means of Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy, Scanning Electron Microscopy (SEM), thermogravimetry (TGA), differential scanning calorimetry (DSC) (FWI > 80%) and drying kinetics. The plant extracts and the encapsulation efficiency (similar to 84%) were, respectively, characterized and evaluated by High-performance Liquid Chromatography-Mass Spectrometry (HPLC-MS). Finally, preliminary microbiological tests were conducted to test the efficacy of the most promising systems as biocidal formulations both in the lab and on a model soil, and interesting results were obtained in the reduction of bacterial and fungal load, which could lead to sustainable perspectives in the field
- âŠ