1,613 research outputs found
Inclusive One Jet Production With Multiple Interactions in the Regge Limit of pQCD
DIS on a two nucleon system in the regge limit is considered. In this
framework a review is given of a pQCD approach for the computation of the
corrections to the inclusive one jet production cross section at finite number
of colors and discuss the general results.Comment: 4 pages, latex, aicproc format, Contribution to the proceedings of
"Diffraction 2008", 9-14 Sep. 2008, La Londe-les-Maures, Franc
Size reconstructibility of graphs
The deck of a graph is given by the multiset of (unlabelled) subgraphs
. The subgraphs are referred to as the cards of .
Brown and Fenner recently showed that, for , the number of edges of a
graph can be computed from any deck missing 2 cards. We show that, for
sufficiently large , the number of edges can be computed from any deck
missing at most cards.Comment: 15 page
Better Synchronizability Predicted by Crossed Double Cycle
In this brief report, we propose a network model named crossed double cycles,
which are completely symmetrical and can be considered as the extensions of
nearest-neighboring lattices. The synchronizability, measured by eigenratio
, can be sharply enhanced by adjusting the only parameter, crossed length
. The eigenratio is shown very sensitive to the average distance ,
and the smaller average distance will lead to better synchronizability.
Furthermore, we find that, in a wide interval, the eigenratio approximately
obeys a power-law form as .Comment: 4 pages, 5 figure
Fundamental Cycles and Graph Embeddings
In this paper we present a new Good Characterization of maximum genus of a
graph which makes a common generalization of the works of Xuong, Liu, and Fu et
al. Based on this, we find a new polynomially bounded algorithm to find the
maximum genus of a graph
Bipartite partial duals and circuits in medial graphs
It is well known that a plane graph is Eulerian if and only if its geometric
dual is bipartite. We extend this result to partial duals of plane graphs. We
then characterize all bipartite partial duals of a plane graph in terms of
oriented circuits in its medial graph.Comment: v2: minor changes. To appear in Combinatoric
Finding 2-Edge and 2-Vertex Strongly Connected Components in Quadratic Time
We present faster algorithms for computing the 2-edge and 2-vertex strongly
connected components of a directed graph, which are straightforward
generalizations of strongly connected components. While in undirected graphs
the 2-edge and 2-vertex connected components can be found in linear time, in
directed graphs only rather simple -time algorithms were known. We use
a hierarchical sparsification technique to obtain algorithms that run in time
. For 2-edge strongly connected components our algorithm gives the
first running time improvement in 20 years. Additionally we present an -time algorithm for 2-edge strongly connected components, and thus
improve over the running time also when . Our approach
extends to k-edge and k-vertex strongly connected components for any constant k
with a running time of for edges and for vertices
Inductive Construction of 2-Connected Graphs for Calculating the Virial Coefficients
In this paper we give a method for constructing systematically all simple
2-connected graphs with n vertices from the set of simple 2-connected graphs
with n-1 vertices, by means of two operations: subdivision of an edge and
addition of a vertex. The motivation of our study comes from the theory of
non-ideal gases and, more specifically, from the virial equation of state. It
is a known result of Statistical Mechanics that the coefficients in the virial
equation of state are sums over labelled 2-connected graphs. These graphs
correspond to clusters of particles. Thus, theoretically, the virial
coefficients of any order can be calculated by means of 2-connected graphs used
in the virial coefficient of the previous order. Our main result gives a method
for constructing inductively all simple 2-connected graphs, by induction on the
number of vertices. Moreover, the two operations we are using maintain the
correspondence between graphs and clusters of particles.Comment: 23 pages, 5 figures, 3 table
A Hybrid Artificial Bee Colony Algorithm for Graph 3-Coloring
The Artificial Bee Colony (ABC) is the name of an optimization algorithm that
was inspired by the intelligent behavior of a honey bee swarm. It is widely
recognized as a quick, reliable, and efficient methods for solving optimization
problems. This paper proposes a hybrid ABC (HABC) algorithm for graph
3-coloring, which is a well-known discrete optimization problem. The results of
HABC are compared with results of the well-known graph coloring algorithms of
today, i.e. the Tabucol and Hybrid Evolutionary algorithm (HEA) and results of
the traditional evolutionary algorithm with SAW method (EA-SAW). Extensive
experimentations has shown that the HABC matched the competitive results of the
best graph coloring algorithms, and did better than the traditional heuristics
EA-SAW when solving equi-partite, flat, and random generated medium-sized
graphs
Counting flags in triangle-free digraphs
Motivated by the Caccetta-Haggkvist Conjecture, we prove that every digraph
on n vertices with minimum outdegree 0.3465n contains an oriented triangle.
This improves the bound of 0.3532n of Hamburger, Haxell and Kostochka. The main
new tool we use in our proof is the theory of flag algebras developed recently
by Razborov.Comment: 19 pages, 7 figures; this is the final version to appear in
Combinatoric
Tur\'an numbers for -free graphs: topological obstructions and algebraic constructions
We show that every hypersurface in contains a large grid,
i.e., the set of the form , with . We use this to
deduce that the known constructions of extremal -free and
-free graphs cannot be generalized to a similar construction of
-free graphs for any . We also give new constructions of
extremal -free graphs for large .Comment: Fixed a small mistake in the application of Proposition
- …