3,911 research outputs found
Region of the anomalous compression under Bondi-Hoyle accretion
We investigate the properties of an axisymmetric non-magnetized gas flow
without angular momentum on a small compact object, in particular, on a
Schwarzschild black hole in the supersonic region near the object; the velocity
of the object itself is assumed to be low compared to the speed of sound at
infinity. First of all, we see that the streamlines intersect (i.e., a caustic
forms) on the symmetry axis at a certain distance from the center on the
front side if the pressure gradient is neglected. The characteristic radial
size of the region, in which the streamlines emerging from the sonic surface at
an angle no larger than to the axis intersect, is To refine the flow structure in this region, we numerically
compute the system in the adiabatic approximation without ignoring the
pressure. We estimate the parameters of the inferred region with anomalously
high matter temperature and density accompanied by anomalously high energy
release.Comment: 10 pages, 2 figure
Algorithmic construction of static perfect fluid spheres
Perfect fluid spheres, both Newtonian and relativistic, have attracted
considerable attention as the first step in developing realistic stellar models
(or models for fluid planets). Whereas there have been some early hints on how
one might find general solutions to the perfect fluid constraint in the absence
of a specific equation of state, explicit and fully general solutions of the
perfect fluid constraint have only very recently been developed. In this
article we present a version of Lake's algorithm [Phys. Rev. D 67 (2003)
104015; gr-qc/0209104] wherein: (1) we re-cast the algorithm in terms of
variables with a clear physical meaning -- the average density and the locally
measured acceleration due to gravity, (2) we present explicit and fully general
formulae for the mass profile and pressure profile, and (3) we present an
explicit closed-form expression for the central pressure. Furthermore we can
then use the formalism to easily understand the pattern of inter-relationships
among many of the previously known exact solutions, and generate several new
exact solutions.Comment: Uses revtex4. V2: Minor clarifications, plus an additional section on
how to turn the algorithm into a solution generalization technique. This
version accepted for publication in Physical Review D. Now 7 page
Hairy Black Holes and Null Circular Geodesics
Einstein-matter theories in which hairy black-hole configurations have been
found are studied. We prove that the nontrivial behavior of the hair must
extend beyond the null circular orbit (the photonsphere) of the corresponding
spacetime. We further conjecture that the region above the photonsphere
contains at least 50% of the total hair's mass. We support this conjecture with
analytical and numerical results.Comment: 5 page
Advection-Dominated Accretion with Infall and Outflows
We present self-similar solutions for advection-dominated accretion flows
with radial viscous force in the presence of outflows from the accretion flow
or infall. The axisymmetric flow is treated in variables integrated over polar
sections and the effects of infall and outflows on the accretion flow are
parametrised for possible configurations compatible with the self-similar
solution. We investigate the resulting accretion flows for three different
viscosity laws and derive upper limits on the viscosity parameter alpha. In
addition, we find a natural connection to non-rotating and spherical accretion
with turbulent viscosity, which is assumed to persist even without differential
rotation. Positive Bernoulli numbers for advection-dominated accretion allow a
fraction of the gas to be expelled in an outflow and the upper limit on the
viscosity predicts that outflows are inevitable for equations of state close to
an ideal gas.Comment: 17 pages, 9 figures, accepted for publication in the Astrophysical
Journa
Is There a Relationship between the Density of Primordial Black Holes in a Galaxy and the Rate of Cosmological Gamma-Ray Bursts?
The rate of accretion of matter from a solar-type star onto a primordial
black hole (PBH) that passes through it is calculated. The probability that a
PBH is captured into an orbit around a star in a galaxy is found. The mean
lifetime of the PBH in such an orbit and the rate of orbital captures of PBHs
in the galaxy are calculated. It is shown that this rate does not depend on the
mass of the PBH. This mechanism cannot make an appreciable contribution to the
rate of observed gamma-ray bursts. The density of PBHs in the galaxy can reach
a critical value - the density of the mass of dark matter in the galaxy.Comment: 7 page
Hydromagnetic and gravitomagnetic crust-core coupling in a precessing neutron star
We consider two types of mechanical coupling between the crust and the core
of a precessing neutron star. First, we find that a hydromagnetic (MHD)
coupling between the crust and the core strongly modifies the star's
precessional modes when ; here is the
Alfven crossing timescale, and and are the star's spin and
precession periods, respectively. We argue that in a precessing pulsar PSR
B1828-11 the restoring MHD stress prevents a free wobble of the crust relative
to the non-precessing core. Instead, the crust and the proton-electron plasma
in the core must precess in unison, and their combined ellipticity determines
the period of precession. Link has recently shown that the neutron superfluid
vortices in the core of PSR B1828-11 cannot be pinned to the plasma; he has
also argued that this lack of pinning is expected if the proton Fermi liquid in
the core is type-I superconductor. In this case, the neutron superfluid is
dynamically decoupled from the precessing motion. The pulsar's precession
decays due to the mutual friction between the neutron superfluid and the plasma
in the core. The decay is expected to occur over tens to hundreds of precession
periods and may be measurable over a human lifetime. Such a measurement would
provide information about the strong n-p interaction in the neutron-star core.
Second, we consider the effect of gravitomagnetic coupling between the neutron
superfluid in the core and the rest of the star and show that this coupling
changes the rate of precession by about 10%. The general formalism developed in
this paper may be useful for other applications.Comment: 6 page
Very Old Isolated Compact Objects as Dark Matter Probes
Very old isolated neutron stars and white dwarfs have been suggested to be
probes of dark matter. To play such a role, two requests should be fulfilled,
i.e., the annihilation luminosity of the captured dark matter particles is
above the thermal emission of the cooling compact objects (request-I) and also
dominate over the energy output due to the accretion of normal matter onto the
compact objects (request-II). Request-I calls for very dense dark matter medium
and the critical density sensitively depends on the residual surface
temperature of the very old compact objects. The accretion of
interstellar/intracluster medium onto the compact objects is governed by the
physical properties of the medium and by the magnetization and rotation of the
stars and may outshine the signal of dark matter annihilation. Only in a few
specific scenarios both requests are satisfied and the compact objects are dark
matter burners. The observational challenges are discussed and a possible way
to identify the dark matter burners is outlined.Comment: 9 pages including 1 Figure, to appear in Phys. Rev.
Topological Quintessence
A global monopole (or other topological defect) formed during a recent phase
transition with core size comparable to the present Hubble scale, could induce
the observed accelerating expansion of the universe. In such a model,
topological considerations trap the scalar field close to a local maximum of
its potential in a cosmologically large region of space. We perform detailed
numerical simulations of such an inhomogeneous dark energy system (topological
quintessence) minimally coupled to gravity, in a flat background of initially
homogeneous matter. We find that when the energy density of the field in the
monopole core starts dominating the background density, the spacetime in the
core starts to accelerate its expansion in accordance to a \Lambda CDM model
with an effective inhomogeneous spherical dark energy density parameter
\Omega_\Lambda(r). The matter density profile is found to respond to the global
monopole profile via an anti-correlation (matter underdensity in the monopole
core). Away from the monopole core, the spacetime is effectively
Einstein-deSitter (\Omega_\Lambda(r_{out}) -> 0) while at the center
\Omega_\Lambda(r ~ 0) is maximum. We fit the numerically obtained expansion
rate at the monopole core to the Union2 data and show that the quality of fit
is almost identical to that of \Lambda CDM. Finally, we discuss potential
observational signatures of this class of inhomogeneous dark energy models.Comment: Accepted in Phys. Rev. D (to appear). Added observational bounds on
parameters. 10 pages (two column revtex), 6 figures. The Mathematica files
used to produce the figures of this study may be downloaded from
http://leandros.physics.uoi.gr/topquin
Gravitational radiation from dynamical black holes
An effective energy tensor for gravitational radiation is identified for
uniformly expanding flows of the Hawking mass-energy. It appears in an energy
conservation law expressing the change in mass due to the energy densities of
matter and gravitational radiation, with respect to a Killing-like vector
encoding a preferred flow of time outside a black hole. In a spin-coefficient
formulation, the components of the effective energy tensor can be understood as
the energy densities of ingoing and outgoing, transverse and longitudinal
gravitational radiation. By anchoring the flow to the trapping horizon of a
black hole in a given sequence of spatial hypersurfaces, there is a locally
unique flow and a measure of gravitational radiation in the strong-field
regime.Comment: 5 revtex4 pages. Additional comment
Laudatores Temporis Acti, or Why Cosmology is Alive and Well - A Reply to Disney
A recent criticism of cosmological methodology and achievements by Disney
(2000) is assessed. Some historical and epistemological fallacies in the said
article have been highlighted. It is shown that---both empirically and
epistemologically---modern cosmology lies on sounder foundations than it is
portrayed. A brief historical account demonstrates that this form of
unsatisfaction with cosmology has had a long tradition, and rather meagre
results in the course of the XX century.Comment: 11 pages, no figures; a criticism of astro-ph/0009020; Gen. Rel.
Grav., accepted for publicatio
- …