12,395 research outputs found

    Introduction: memory on the move

    Get PDF

    CMB Likelihood Functions for Beginners and Experts

    Full text link
    Although the broad outlines of the appropriate pipeline for cosmological likelihood analysis with CMB data has been known for several years, only recently have we had to contend with the full, large-scale, computationally challenging problem involving both highly-correlated noise and extremely large datasets (N>1000N > 1000). In this talk we concentrate on the beginning and end of this process. First, we discuss estimating the noise covariance from the data itself in a rigorous and unbiased way; this is essentially an iterated minimum-variance mapmaking approach. We also discuss the unbiased determination of cosmological parameters from estimates of the power spectrum or experimental bandpowers.Comment: Long-delayed submission. In AIP Conference Proceedings "3K Cosmology" held in Rome, Oct 5-10, 1998, edited by Luciano Maiani, Francesco Melchiorri and Nicola Vittorio, 343-347, New York, American Institute of Physics 199

    Constraining Large Scale Structure Theories with the Cosmic Background Radiation

    Full text link
    We review the relevant 10+ parameters associated with inflation and matter content; the relation between LSS and primary and secondary CMB anisotropy probes; COBE constraints on energy injection; current anisotropy band-powers which strongly support the gravitational instability theory and suggest the universe could not have reionized too early. We use Bayesian analysis methods to determine what current CMB and CMB+LSS data imply for inflation-based Gaussian fluctuations in tilted Λ\LambdaCDM, Λ\LambdahCDM and oCDM model sequences with age 11-15 Gyr, consisting of mixtures of baryons, cold (and possibly hot) dark matter, vacuum energy, and curvature energy in open cosmologies. For example, we find the slope of the initial spectrum is within about 5% of the (preferred) scale invariant form when just the CMB data is used, and for Λ\LambdaCDM when LSS data is combined with CMB; with both, a nonzero value of ΩΛ\Omega_\Lambda is strongly preferred (≈2/3\approx 2/3 for a 13 Gyr sequence, similar to the value from SNIa). The ooCDM sequence prefers Ωtot<1\Omega_{tot}<1 , but is overall much less likely than the flat ΩΛ≠0\Omega_\Lambda \ne 0 sequence with CMB+LSS. We also review the rosy forecasts of angular power spectra and parameter estimates from future balloon and satellite experiments when foreground and systematic effects are ignored.Comment: 20 pages, LaTeX, 5 figures, 2 tables, uses rspublic.sty To appear in Philosophical Transactions of the Royal Society of London A, 1998. "Discussion Meeting on Large Scale Structure in the Universe," Royal Society, London, March 1998. Text and colour figures also available at ftp://ftp.cita.utoronto.ca/bond/roysoc9

    The Exotic Eclipsing Nucleus of the Ring Planetary Nebula SuWt2

    Full text link
    SuWt2 is a planetary nebula (PN) consisting of a bright ionized thin ring seen nearly edge-on. It has a bright (V=12) central star, too cool to ionize the PN, which we discovered to be an eclipsing binary. A spectrum from IUE did not reveal a UV source. We present extensive ground-based photometry and spectroscopy of the central binary collected over the ensuing two decades, resulting in the determination that the orbital period of the eclipsing pair is 4.9 d, and consists of two nearly identical A1 V stars, each of mass ~2.7 M_sun. The physical parameters of the A stars, combined with evolutionary tracks, show that both are in the short-lived "blue-hook" evolutionary phase that occurs between the main sequence and the Hertzsprung gap, and that the age of the system is about 520 Myr. One puzzle is that the stars' rotational velocities are different from each other, and considerably slower than synchronous with the orbital period. It is possible that the center-of-mass velocity of the eclipsing pair is varying with time, suggesting that there is an unseen third orbiting body in the system. We propose a scenario in which the system began as a hierarchical triple, consisting of a ~2.9 M_sun star orbiting the close pair of A stars. Upon reaching the AGB stage, the primary engulfed the pair into a common envelope, leading to a rapid contraction of the orbit and catastrophic ejection of the envelope into the orbital plane. In this picture, the exposed core of the initial primary is now a white dwarf of ~0.7 M_sun, orbiting the eclipsing pair, which has already cooled below the detectability possible by IUE at our derived distance of 2.3 kpc and a reddening of E(B-V)=0.40. The SuWt2 system may be destined to perish as a Type Ia supernova. (Abridged)Comment: 60 pages, 11 figure, to appear in the Astronomical Journa

    Simulation of seismic events induced by CO2 injection at In Salah, Algeria

    Get PDF
    Date of Acceptance: 18/06/2015 Acknowledgments The authors would like to thank the operators of the In Salah JV and JIP, BP, Statoil and Sonatrach, for providing the data shown in this paper, and for giving permission to publish. Midland Valley Exploration are thanked for the use of their Move software for geomechanical restoration. JPV is a Natural Environment Research Council (NERC) Early Career Research Fellow (Grant NE/I021497/1) and ALS is funded by a NERC Partnership Research Grant (Grant NE/I010904).Peer reviewedPublisher PD

    The Evolution of the Cosmic Microwave Background

    Full text link
    We discuss the time dependence and future of the Cosmic Microwave Background (CMB) in the context of the standard cosmological model, in which we are now entering a state of endless accelerated expansion. The mean temperature will simply decrease until it reaches the effective temperature of the de Sitter vacuum, while the dipole will oscillate as the Sun orbits the Galaxy. However, the higher CMB multipoles have a richer phenomenology. The CMB anisotropy power spectrum will for the most part simply project to smaller scales, as the comoving distance to last scattering increases, and we derive a scaling relation that describes this behaviour. However, there will also be a dramatic increase in the integrated Sachs-Wolfe contribution at low multipoles. We also discuss the effects of tensor modes and optical depth due to Thomson scattering. We introduce a correlation function relating the sky maps at two times and the closely related power spectrum of the difference map. We compute the evolution both analytically and numerically, and present simulated future sky maps.Comment: 23 pages, 11 figures; references added; one figure dropped and minor changes to match published version. For high-resolution versions of figures and animations, see http://www.astro.ubc.ca/people/scott/future.htm

    The Imprint of Gravitational Waves on the Cosmic Microwave Background

    Get PDF
    Long-wavelength gravitational waves can induce significant temperature anisotropy in the cosmic microwave background. Distinguishing this from anisotropy induced by energy density fluctuations is critical for testing inflationary cosmology and theories of large-scale structure formation. We describe full radiative transport calculations of the two contributions and show that they differ dramatically at angular scales below a few degrees. We show how anisotropy experiments probing large- and small-angular scales can combine to distinguish the imprint due to gravitational waves.Comment: 11 pages, Penn Preprint-UPR-

    Statistics of Dark Matter Halos from Gravitational Lensing

    Get PDF
    We present a new approach to measure the mass function of dark matter halos and to discriminate models with differing values of Omega through weak gravitational lensing. We measure the distribution of peaks from simulated lensing surveys and show that the lensing signal due to dark matter halos can be detected for a wide range of peak heights. Even when the signal-to-noise is well below the limit for detection of individual halos, projected halo statistics can be constrained for halo masses spanning galactic to cluster halos. The use of peak statistics relies on an analytical model of the noise due to the intrinsic ellipticities of source galaxies. The noise model has been shown to accurately describe simulated data for a variety of input ellipticity distributions. We show that the measured peak distribution has distinct signatures of gravitational lensing, and its non-Gaussian shape can be used to distinguish models with different values of Omega. The use of peak statistics is complementary to the measurement of field statistics, such as the ellipticity correlation function, and possibly not susceptible to the same systematic errors.Comment: 5 pages, 4 figures, matches version accepted for ApJ
    • 

    corecore