205 research outputs found
Quantitative reduction of RyR1 protein caused by a single-allele frameshift mutation in RYR1 ex36 impairs the strength of adult skeletal muscle fibres
Here we characterized a mouse model knocked-in for a frameshift mutation in RYR1 exon 36 (p.Gln1970fsX16) that is isogenic to that identified in one parent of a severely affected patient with recessively inherited multiminicore disease. This individual carrying the RYR1 frameshifting mutation complained of mild muscle weakness and fatigability. Analysis of the RyR1 protein content in a muscle biopsy from this individual showed a content of only 20% of that present in a control individual. The biochemical and physiological characteristics of skeletal muscles from RyR1Q1970fsX16 heterozygous mice recapitulates that of the heterozygous parent. RyR1 protein content in the muscles of mutant mice reached 38% and 58% of that present in total muscle homogenates of fast and slow muscles from wild-type (WT) littermates. The decrease of RyR1 protein content in total homogenates is not accompanied by a decrease of Cav1.1 content, whereby the Cav1.1/RyR1 stoichiometry ratio in skeletal muscles from RyR1Q1970fsX16 heterozygous mice is lower compared to that from WT mice. Electron microscopy (EM) revealed a 36% reduction in the number/area of calcium release units accompanied by a 2.5-fold increase of dyads (triads that have lost one junctional sarcoplasmic reticulum element); both results suggest a reduction of the RyR1 arrays. Compared to WT, muscle strength and depolarization-induced calcium transients in RyR1Q1970fsX16 heterozygous mice muscles were decreased by 20% and 15%, respectively. The RyR1Q1970fsX16 mouse model provides mechanistic insight concerning the phenotype of the parent carrying the RYR1 ex36 mutation and suggests that in skeletal muscle fibres there is a functional reserve of RyR1
Decreased apoptosis in fatty livers submitted to subnormothermic machine-perfusion respect to cold storage
Machine perfusion at subnormothermic temperature (20°C), MP20, was developed by Vairetti et al. and showed to afford a better preservation of fatty livers respect to traditional cold storage (CS) in terms of enzyme release into the perfusate, bile production, glycogen stores, energy charge and oxidative stress. Here we investigated whether it also caused decreased cell death by apoptosis. Fatty and lean Zucker rats were submitted to MP20 or CS for 6 h and reperfused normothermically for 2 h. Apoptotic cells were revealed by immunohistochemistry of activated caspase-3 and M30 (new epitope on CK18 degraded by caspase-3) and by the TUNEL assay. Portal pressure was also determined. A statistically significant reduction of hepatocyte apoptosis, but especially of sinusoidal cells was determined for fatty livers submitted to MP20 respect to CS. Portal pressure was significantly lower after MP20 respect to CS. The reduction of sinusoidal cell death by apoptosis without need for anti-apoptotic therapies appears particularly positive since apoptotic sinusoidal cells hinder microcirculation in the sinusoids and are thrombogenic. These results further confirm the potential of MP20 for preserving fatty livers that would be otherwise discarded as grafts, and thus for increasing the donor pool for liver transplantation
Progressive osseous heteroplasia: A case report with an unexpected trigger
Progressive osseous heteroplasia (POH) is a rare genetic disorder characterised by progressive heterotopic ossification (HO) within the skin and subcutaneous tissues. The condition is caused by heterozygous inactivating mutations of the GNAS gene and usually presents in infancy. We describe the case of a white male ex-preterm who was first referred because of subcutaneous calcium deposits along the right arm after extravasation of parenteral nutrition. As these lesions progressed, a skin biopsy was undertaken which revealed intramembranous ossification. Genetic testing revealed a constitutional, de novo, heterozygous, nonsense variant in the GNAS gene that has not previously been described, but which is consistent with patient's clinical diagnosis of POH. No endocrine abnormalities or other signs congruent with overlapping conditions were detected. To the best of our knowledge, this is the first case describing an inflammatory trigger in POH. Trials with intravenous bisphosphonate and glucocorticoid as well as with topical sodium thiosulphate were attempted without clinical improvement. Excision of the calcifications and physiotherapy seem to have provided a partial improvement on mobility of the elbow. This case widens the spectrum of phenotypes seen in GNAS mutation disorders and suggests that alternative anti-inflammatory treatments may be effective. Mutations in GNAS should be considered in cases of significant progressive calcium deposition after extravasation injury
From Bed to Bench and Back: TNF-α, IL-23/IL-17A, and JAK-Dependent Inflammation in the Pathogenesis of Psoriatic Synovitis
Psoriatic arthritis (PsA) is a chronic inflammatory immune-mediated disease with a burdensome impact on quality of life and substantial healthcare costs. To date, pharmacological interventions with different mechanisms of action, including conventional synthetic (cs), biological (b), and targeted synthetic (ts) disease-modifying antirheumatic drugs (DMARDs), have been proven efficacious, despite a relevant proportion of failures. The current approach in clinical practice and research is typically “predictive”: the expected response is based on stratification according to clinical, imaging, and laboratory data, with a “heuristic” approach based on “trial and error”. Several available therapeutic options target the TNF-α pathway, while others are directed against the IL-23/IL-17A axis. Janus kinase inhibitors (JAKis), instead, simultaneously block different pathways, endowing these drugs with a potentially “broad-spectrum” mechanism of action. It is not clear, however, whether targeting a specific pathway (e.g., TNF-α or the IL-23/IL-17 axis) could result in discordant effects over other approaches. In particular, in the case of “refractory to a treatment” patients, other pathways might be hyperactivated, with opposing, synergistic, or redundant biological significance. On the contrary, refractory states could be purely resistant to treatment as a whole. Since chronic synovitis is one of the primary targets of inflammation in PsA, synovial biomarkers could be useful in depicting specific biological characteristics of the inflammatory burden at the single-patient level, and despite not yet being implemented in clinical practice, these biomarkers might help in selecting the proper treatment. In this narrative review, we will provide an up-to-date overview of the knowledge in the field of psoriatic synovitis regarding studies investigating the relationships among different activated proinflammatory processes suitable for targeting by different available drugs. The final objective is to clarify the state of the art in the field of personalized medicine for psoriatic disease, aiming at moving beyond the current treatment schedules toward a patient-centered approach
Activity of N-Acetylcysteine Alone and in Combination with Colistin against Pseudomonas aeruginosa Biofilms and Transcriptomic Response to N-Acetylcysteine Exposure
Chronic colonization by Pseudomonas aeruginosa is critical in cystic fibrosis (CF) and other chronic lung diseases, contributing to disease progression. Biofilm growth and a propensity to evolve multidrug resistance phenotypes drastically limit the available therapeutic options. In this perspective, there has been growing interest in evaluating combination therapies, especially for drugs that can be administered by nebulization, which allows high drug concentrations to be reached at the site of infections while limiting systemic toxicity. Here, we investigated the potential antibiofilm activity of N-acetylcysteine (NAC) alone and in combination with colistin against a panel of P. aeruginosa strains (most of which are from CF patients) and the transcriptomic response of a P. aeruginosa CF strain to NAC exposure. NAC alone (8,000 mg/L) showed a limited and strain-dependent antibiofilm activity. Nonetheless, a relevant antibiofilm synergism of NAC-colistin combinations (NAC at 8,000 mg/L plus colistin at 2 to 32 mg/L) was observed with all strains. Synergism was also confirmed with the artificial sputum medium model. RNA sequencing of NAC-exposed planktonic cultures revealed that NAC (8,000 mg/L) mainly induced (i) a Zn21 starvation response (known to induce attenuation of P. aeruginosa virulence), (ii) downregulation of genes of the denitrification apparatus, and (iii) downregulation of flagellar biosynthesis pathway. NAC-mediated inhibition of P. aeruginosa denitrification pathway and flagellum-mediated motility were confirmed experimentally. These findings suggested that NAC-colistin combinations might contribute to the management of biofilm-associated P. aeruginosa lung infections. NAC might also have a role in reducing P. aeruginosa virulence, which could be relevant in the very early stages of lung colonization. © 2022 Valzano et al
In Vitro Synergism of Colistin and N-acetylcysteine against Stenotrophomonas maltophilia
Stenotrophomonas maltophilia is an emerging global opportunistic pathogen, responsible for a wide range of human infections, including respiratory tract infections. Intrinsic multidrug resistance and propensity to form biofilms make S. maltophilia infections recalcitrant to treatment. Colistin is among the second-line options in case of difficult-to-treat S. maltophilia infections, with the advantage of being also administrable by nebulization. We investigated the potential synergism of colistin in combination with N-acetylcysteine (NAC) (a mucolytic agent with antioxidant and anti-inflammatory properties) against S. maltophilia grown in planktonic phase and biofilm. Eighteen S. maltophilia clinical isolates (comprising three isolates from cystic fibrosis (CF) and two trimethoprim-sulfamethoxazole (SXT)-resistant strains) were included. Checkerboard assays showed a synergism of colistin/NAC combinations against the strains with colistin Minimum Inhibitory Concentration (MIC) >2 \ub5g/mL (n = 13), suggesting that NAC could antagonize the mechanisms involved in colistin resistance. Nonetheless, time-kill assays revealed that NAC might potentiate colistin activity also in case of lower colistin MICs. A dose-dependent potentiation of colistin activity by NAC was also clearly observed against S. maltophilia biofilms, also at sub-MIC concentrations. Colistin/NAC combinations, at concentrations likely achievable by topical administration, might represent a valid option for the treatment of S. maltophilia respiratory infections and should be examined further
Defective endoplasmic reticulum-mitochondria contacts and bioenergetics in SEPN1-related myopathy
SEPN1-related myopathy (SEPN1-RM) is a muscle disorder due to mutations of the SEPN1 gene, which is characterized by muscle weakness and fatigue leading to scoliosis and life-threatening respiratory failure. Core lesions, focal areas of mitochondria depletion in skeletal muscle fibers, are the most common histopathological lesion. SEPN1-RM underlying mechanisms and the precise role of SEPN1 in muscle remained incompletely understood, hindering the development of biomarkers and therapies for this untreatable disease. To investigate the pathophysiological pathways in SEPN1-RM, we performed metabolic studies, calcium and ATP measurements, super-resolution and electron microscopy on in vivo and in vitro models of SEPN1 deficiency as well as muscle biopsies from SEPN1-RM patients. Mouse models of SEPN1 deficiency showed marked alterations in mitochondrial physiology and energy metabolism, suggesting that SEPN1 controls mitochondrial bioenergetics. Moreover, we found that SEPN1 was enriched at the mitochondria-associated membranes (MAM), and was needed for calcium transients between ER and mitochondria, as well as for the integrity of ER-mitochondria contacts. Consistently, loss of SEPN1 in patients was associated with alterations in body composition which correlated with the severity of muscle weakness, and with impaired ER-mitochondria contacts and low ATP levels. Our results indicate a role of SEPN1 as a novel MAM protein involved in mitochondrial bioenergetics. They also identify a systemic bioenergetic component in SEPN1-RM and establish mitochondria as a novel therapeutic target. This role of SEPN1 contributes to explain the fatigue and core lesions in skeletal muscle as well as the body composition abnormalities identified as part of the SEPN1-RM phenotype. Finally, these results point out to an unrecognized interplay between mitochondrial bioenergetics and ER homeostasis in skeletal muscle. They could therefore pave the way to the identification of biomarkers and therapeutic drugs for SEPN1-RM and for other disorders in which muscle ER-mitochondria cross-talk are impaired
Despite lost contractility, a sub-population of rat muscle fibers maintains an assessable excitation-contraction coupling mechanism after long-standing denervation
J Neuropathol Exp Neurol. 2009 Dec;68(12):1256-68.
A subpopulation of rat muscle fibers maintains an assessable excitation-contraction coupling mechanism after long-standing denervation despite lost contractility.
Squecco R, Carraro U, Kern H, Pond A, Adami N, Biral D, Vindigni V, Boncompagni S, Pietrangelo T, Bosco G, Fanò G, Marini M, Abruzzo PM, Germinario E, Danieli-Betto D, Protasi F, Francini F, Zampieri S.
Source
Interuniversitary Institute of Myology, Chieti, Italy.
Abstract
To define the time course and potential effects of electrical stimulation on permanently denervated muscle, we evaluated excitation-contraction coupling (ECC) of rat leg muscles during progression to long-term denervation by ultrastructural analysis, specific binding to dihydropyridine receptors, ryanodine receptor 1 (RYR-1), Ca channels and extrusion Ca pumps, gene transcription and translation of Ca-handling proteins, and in vitro mechanical properties and electrophysiological analyses of sarcolemmal passive properties and L-type Ca current (ICa) parameters. We found that in response to long-term denervation: 1) isolated muscle that is unable to twitch in vitro by electrical stimulation has very small myofibers but may show a slow caffeine contracture; 2) only roughly half of the muscle fibers with "voltage-dependent Ca channel activity" are able to contract; 3) the ECC mechanisms are still present and, in part, functional; 4)ECC-related gene expression is upregulated; and 5) at any time point, there are muscle fibers that are more resistant than others to denervation atrophy and disorganization of the ECC apparatus. These results support the hypothesis that prolonged "resting" [Ca] may drive progression of muscle atrophy to degeneration and that electrical stimulation-induced [Ca] modulation may mimic the lost nerve influence, playing a key role in modifying the gene expression of denervated muscle. Hence, these data provide a potential molecular explanation for the muscle recovery that occurs in response to rehabilitation strategies developed based on empirical clinical observations.
PMID:
19915489
[PubMed - indexed for MEDLINE
Triadin/Junctin Double Null Mouse Reveals a Differential Role for Triadin and Junctin in Anchoring CASQ to the jSR and Regulating Ca2+ Homeostasis
Triadin (Tdn) and Junctin (Jct) are structurally related transmembrane proteins thought to be key mediators of structural and functional interactions between calsequestrin (CASQ) and ryanodine receptor (RyRs) at the junctional sarcoplasmic reticulum (jSR). However, the specific contribution of each protein to the jSR architecture and to excitation-contraction (e-c) coupling has not been fully established. Here, using mouse models lacking either Tdn (Tdn-null), Jct (Jct-null) or both (Tdn/Jct-null), we identify Tdn as the main component of periodically located anchors connecting CASQ to the RyR-bearing jSR membrane. Both proteins proved to be important for the structural organization of jSR cisternae and retention of CASQ within them, but with different degrees of impact. Our results also suggest that the presence of CASQ is responsible for the wide lumen of the jSR cisternae. Using Ca2+ imaging and Ca2+ selective microelectrodes we found that changes in e-c coupling, SR Ca2+content and resting [Ca2+] in Jct, Tdn and Tdn/Jct-null muscles are directly correlated to the effect of each deletion on CASQ content and its organization within the jSR. These data suggest that in skeletal muscle the disruption of Tdn/CASQ link has a more profound effect on jSR architecture and myoplasmic Ca2+ regulation than Jct/CASQ association
Awareness of health risks related to body art practices among youth in Naples, Italy: a descriptive convenience sample study
<p>Abstract</p> <p>Background</p> <p>Body art practices have emerged as common activities among youth, yet few studies have investigated awareness in different age groups of possible health complications associated with piercing and tattooing.</p> <p>Methods</p> <p>We investigated perceptions of and knowledge about health risks. To highlight differences among age groups, we gathered data from students at high schools and universities in the province of Naples.</p> <p>Results</p> <p>Of 9,322 adolescents, 31.3% were pierced and 11.3% were tattooed. Of 3,610 undergraduates, 33% were pierced and 24.5% were tattooed (p < 0.05). A higher number of females were pierced in both samples, but there were no gender differences among tattooed students. Among high school students, 79.4% knew about infectious risks and 46% about non-infectious risks; the respective numbers among university students were 87.2% and 59.1%. Only 3.5% of students in high school and 15% of university undergraduates acknowledged the risk of viral disease transmission; 2% and 3% knew about allergic risks. Among adolescents and young adults, 6.9% and 15.3%, respectively, provided signed informed consent; the former were less knowledgeable about health risks (24.7% vs. 57.1%) (p < 0.05). Seventy-three percent of the high school students and 33.5% of the university students had body art done at unauthorized facilities. Approximately 7% of both samples reported complications from their purchased body art.</p> <p>Conclusions</p> <p>Results indicate a need for adequate information on health risks associated with body art among students in Naples, mainly among high school students. Therefore, adolescents should be targeted for public health education programs.</p
- …